2.5 Подробный расчет дефлегматора
В данном разделе подробно рассчитаем один из теплообменников – дефлегматор, выбранный в ориентировочном расчете.
Дефлегматор-аппарат, предназначенный для конденсации паров и подачи флегмы в колонну, представляет собой кожухотрубчатый теплообменник, в межтрубном пространстве, которого обычно конденсируется пары, а в трубах движется охлаждающий агент – вода.
В качестве хладагента используем воду среднего качества со средним значением тепловой проводимости загрязнений стенок , а тепловая проводимость загрязнений стенок органическими парами .
Толщину слоя загрязнения примем равной 2мм. В качестве материала труб выберем нержавеющую сталь с коэффициентом теплопроводности .
Тогда термическое сопротивление загрязнений труб
Расчет коэффициентов теплоотдачи.
Исходные данные: , tD=56 ْC, t2ср=29.32 ْC, , дефлегматор с внутренним диаметром кожуха D=1000 мм, числом труб n=1072, длиной труб l=4м, проходным сечением одного хода Sт=5.1.10-2м и числом рядов труб nр=34, в среднем по 31-32 трубе в ряду.
1. Задаемся температурой стенки ْC
Тогда
Δt=tD-tст1=56-45=11 ْC
tпл=(tкон+tст1)/2=(56+45)/2=50.5 ْC
Далее необходимо определить поверхностные плотности теплового потока и сопоставить их, если разница между ними будет меньше 5 %, то можно считать, что процесс установившийся и температура стенки подобранна правильно.
,
где - коэффициенты теплоотдачи от стенки 1 и 2;
,
где =0,55- множитель, учитывающий влияние числа труб по вертикали;
теплопроводность смеси, Вт/(м.К);
-плотность смеси, кг/м3;
теплота конденсации, Дж/кг;
- скорость свободного падения, м/с;
-вязкость смеси, мПа.с;
- наружный диаметр труб, м.
Коэффициент может быть существенным для вязких конденсатов, а для воды в первом приближении его не учитывают.
Определим теплопроводность, плотность, вязкость при определяющей температуре t=50.5 ْC и теплоту конденсации при температуре конденсации:
кДж/кг
где - теплоты испарения ацетона и четыреххлористого углерода,.
,
где исходные данные: A1 =72.18; t 1кр=235.1; A2=25.64; t2кр=283.4
;
.
мПа.с
мПа.с
кг/м3
кг/м3
кг/м3
Вт/мК
Вт/мК
Тогда
Тогда поверхностная плотность теплового потока первой стенки определим по формуле:
Примем что
Определим температуру второй стенки по формуле:
Определим коэффициент теплопроводности для воды при t=29.32 ْC с помощью интерполяции справочных данных:
Аналогично определим коэффициент теплопроводности для воды при t=34.23 ْC:
Определим вязкость жидкости для воды при t=29.32 ْC с помощью интерполяции справочных данных:
Па
Аналогично определим вязкость воды при t=34.23 ْC:
Па
Определим теплоемкость воды t=29.32 ْC с помощью интерполяции справочных данных:
Аналогично определим теплоемкость воды при t=34.23 ْC:
Определим критерий Рейнольдса по формуле:
,
где - вязкость смеси, Па.с;
G- расход воды, кг/с;
z- число ходов, z=4;
d- внутренний диаметр труб, м;
Nтр- количество труб.
Определим критерий Прандтля для потока и стенки при температурах tср=29.32ْС, tст=34.23ْС:
,
где с- теплоемкость воды, Дж/кгК;
теплопроводность воды, Вт/(м.К);
-вязкость воды, мПа.с.
Определим критерий Нуссельта по формуле:
Зная критерий Нуссельта, определим коэффициент теплоотдачи второй стенки по формуле:
Тогда
Тогда поверхностная плотность теплового потока первой стенки определим по формуле:
Сопоставим q1 и q2, т разность выразим в процентах:
Выбранная температура стенки наугад не подходит.
2. Выбираем новую температуру стенки tст1=44ْС и проводим расчеты аналогично расчетам при температуре стенки ْC
Тогда
Δt=tD-tст1=56-44=12 ْC
tпл=(tкон+tст1)/2=(56+44)/2=50 ْC
Необходимо определить поверхностные плотности теплового потока и сопоставить их, если разница между ними будет меньше 5 %, то можно считать, что процесс установившийся и температура стенки подобранна правильно.
,
где - коэффициенты теплоотдачи от стенки 1 и 2;
,
где =0,55- множитель, учитывающий влияние числа труб по вертикали;
теплопроводность смеси, Вт/(м.К);
-плотность смеси, кг/м3;
теплота конденсации, Дж/кг;
- скорость свободного падения, м/с;
-вязкость смеси, мПа.с;
- наружный диаметр труб, м.
Коэффициент может быть существенным для вязких конденсатов, а для воды его не учитывают.
Определим теплопроводность, плотность, вязкость при определяющей температуре t=50 ْC и теплоту конденсации при температуре конденсации:
кДж/кг
где - теплоты испарения ацетона и четыреххлористого углерода,.
,
где исходные данные: A1 =72.18; t 1кр=235.1; A2=25.64; t2кр=283.4
;
.
мПа.с
мПа.с
кг/м3
кг/м3
кг/м3
Вт/мК
Вт/мК
Тогда
Тогда поверхностная плотность теплового потока первой стенки определим по формуле:
Примем, что
Определим температуру второй стенки по формуле:
Определим коэффициент теплопроводности для воды при t=29.32 ْC с помощью интерполяции справочных данных:
Аналогично определим коэффициент теплопроводности для воды при t=32.5 ْC:
Определим вязкость жидкости для воды при t=29.32 ْC с помощью интерполяции справочных данных:
Па
Аналогично определим вязкость воды при t=32.5 ْC:
Па
Определим теплоемкость воды t=29.32 ْC с помощью интерполяции справочных данных:
Аналогично определим теплоемкость воды при t=32.5 ْC:
Определим критерий Рейнольдса по формуле:
,
где - вязкость смеси, Па.с;
G- расход воды, кг/с;
z- число ходов, z=4;
d- внутренний диаметр труб, м;
Nтр- количество труб.
Определим критерий Прандтля для потока и стенки при температурах tср=29.32ْС, tст=32.5ْС:
,
где с- теплоемкость воды, Дж/кгК;
теплопроводность воды, Вт/(м.К);
-вязкость воды, мПа.с.
Определим критерий Нуссельта по формуле:
Зная критерий Нуссельта, определим коэффициент теплоотдачи второй стенки по формуле:
Тогда
Тогда поверхностная плотность теплового потока первой стенки определим по формуле:
Сопоставим q1 и q2, т разность выразим в процентах:
Выбранная температура стенки наугад не подходит.
... трубопровода: (3.7) . При данном числе Рейнольдса режим движения турбулентный. Режим движения этанола на напорном участке трубопровода от теплообменника до ректификационной колонны: (3.8) где - коэффициент вязкости при t=85°С . Следовательно, режим движения турбулентный. Скорость движения этанола в трубках аппарата: , ...
... применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки). Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. 2. Теоретические основы расчета тарельчатых ректификационных колонн Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический ( ...
... содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом). 3 Расчётная часть 3.1 Задание и исходные данные Необходимо рассчитать насадочную ректификационную колонну для разделения бинарной смеси диоксан – толуол. GD=1000 кг/ч, xF=45% (мол.), xD=90% (мол.), xW=2% (мол.). Давление в колонне составляет 600 мм рт. ст., смесь поступает при температуре ...
... ректификационная колонна 5-куб-испаритель 6-дефлегматор 7-теплообменник 8-промежуточная ёмкость 9-насос 10- теплообменник 11-ёмкость. ЗАДАНИЕ №1 «Расчет ректификационной колонны непрерывного действия» Провести расчет ректификационной колонны непрерывного действия для разделения смеси бензол-толуол с определением основных геометрических размеров колонного аппарата, производительность ...
0 комментариев