3. Используя графический метод, определяем температуру стенки в третьем приближение-
ْC (графическое решение приведено в приложение 5).
Проводим расчеты аналогичные расчетам, выполненным в пункте 2.
Δt=tD-tст1=56-44.8=11.2 ْC
tпл=(tкон+tст1)/2=(56+44.8)/2=50.4 ْC
Необходимо определить поверхностные плотности теплового потока и сопоставить их, если разница между ними будет меньше 5 %, то можно считать, что процесс установившийся и температура стенки подобранна правильно.
,
где - коэффициенты теплоотдачи от стенки 1 и 2;
,
где =0,55- множитель, учитывающий влияние числа труб по вертикали;
теплопроводность смеси, Вт/(м.К);
-плотность смеси, кг/м3;
теплота конденсации, Дж/кг;
- скорость свободного падения, м/с;
-вязкость смеси, мПа.с;
- наружный диаметр труб, м.
Коэффициент может быть существенным для вязких конденсатов, а для воды его не учитывают.
Определим теплопроводность, плотность, вязкость при определяющей температуре t=50 ْC и теплоту конденсации при температуре конденсации:
кДж/кг
где - теплоты испарения ацетона и четыреххлористого углерода,.
,
где исходные данные: A1 =72.18; t 1кр=235.1; A2=25.64; t2кр=283.4
;
.
мПа.с
мПа.с
кг/м3
кг/м3
кг/м3
Вт/мК
Вт/мК
Тогда
Тогда поверхностная плотность теплового потока первой стенки определим по формуле:
Примем что
Определим температуру второй стенки по формуле:
Определим коэффициент теплопроводности для воды при t=29.32 ْC с помощью интерполяции справочных данных:
Аналогично определим коэффициент теплопроводности для воды при t=33.89 ْC:
Определим вязкость жидкости для воды при t=29.32 ْC с помощью интерполяции справочных данных:
Па
Аналогично определим вязкость воды при t=33.89 ْC:
Па
Определим теплоемкость воды t=29.32 ْC с помощью интерполяции справочных данных:
Аналогично определим теплоемкость воды при t=33.89 ْC:
Определим критерий Рейнольдса по формуле:
,
где - вязкость смеси, Па.с;
G- расход воды, кг/с;
z- число ходов, z=4;
d- внутренний диаметр труб, м;
Nтр- количество труб.
Определим критерий Прандтля для потока и стенки при температурах tср=29.32ْС, tст=32.5ْС:
,
где с- теплоемкость воды, Дж/кгК;
теплопроводность воды, Вт/(м.К);
-вязкость воды, мПа.с.
Определим критерий Нуссельта по формуле:
Зная критерий Нуссельта, определим коэффициент теплоотдачи второй стенки по формуле:
Тогда
Тогда поверхностная плотность теплового потока первой стенки определим по формуле:
Сопоставим q1 и q2, т разность выразим в процентах:
Температура стенки подобрана верно.
Определим коэффициент теплоотдачи по формуле:
Зная коэффициент теплоотдачи, определим поверхность теплообмена по формуле:
Таким образом, рассчитанное значение коэффициента теплоотдачи больше выбранного нами коэффициента теплоотдачи в ориентировочном расчете дефлегматора, а поверхность теплообмена меньше, чем ориентировочная поверхность теплообмена дефлегматора. Значение поверхности теплообмена стандартного дефлегматора F=269 м2, следовательно дефлегматор выбран с запасом поверхности теплообмена 13%.
Вывод
В данной курсовой работе мы произвели расчет ректификационной колонны для разделения смеси: ацетон-четыреххлористого углерода при атмосферном давлении. В качестве ректификационной колонны используется аппарат насадочного типа с кольцами Рашига 50мм, обеспечивающий перекрестное движение пара и жидкости, высотой H=6.43м и диаметром D=2м.
Был произведен ориентировочный расчет пяти теплообменников: дефлегматора, подогревателя, куба испарителя и двух холодильников (дистиллята и кубового остатка); в результате чего были выбраны:
- стандартные куб испаритель с трубами 25x2мм, исполнения 2 по ГОСТ 15119-79 с внутренним диаметром кожуха D=1м, числом труб n=747, длиной труб l=3м и поверхностью теплообмена F=176 м2;
- четырехходовой подогреватель по ГОСТ 15121-79 с внутренним диаметром кожуха D=0.6м, числом труб n=334, числом рядов труб np=18, длиной труб l=3м, с проходным сечением одного хода Sт=0.016м2, поверхностью теплообмена F=63 м2;
- двухходовой холодильник кубового остатка с трубами 20x2мм по ГОСТ 15122-79 с внутренним диаметром кожуха D=0.4м, с числом труб n=166, длиной труб l=3м, числом рядов труб np=14, с расстоянием между перегородками в межтрубном пространстве h=0.25м, поверхностью теплообмена F=31м2;
- четырехходовой холодильник дистиллята с трубами 25x2мм по ГОСТ 15122-79 с внутренним диаметром кожуха D=0.6м, с числом труб n=206, длиной труб l=2м, числом рядов труб np=14, с расстоянием между перегородками в межтрубном пространстве h=0.3м, поверхностью теплообмена F=32м2;
- четырехходовой дефлегматор с трубами 20x2мм по ГОСТ 15121-79 с внутренним диаметром кожуха D=1м, числом труб n=1072, длиной труб l=4м, поверхностью теплообмена F=269м2, с числом рядов np=34 и проходным сечением одного хода Sтр=0.051м;
- шестиходовой дефлегматор с трубами 25x2мм по ГОСТ 15121-79 с внутренним диаметром кожуха D=1.2м2, числом труб n=958, длиной труб l=4м, поверхностью теплообмена F=301м2, с числом рядов np=32 и проходным сечением одного хода Sтр=0.052м.
Подробно рассчитаны два дефлегматора: четырехходовой – вручную, шестиходовой – с помощью ЭВМ (приложение 6).
Выбор дефлегматора зависит от конкретных критериев. В случае необходимости получения более высокой скорости протекания процесса необходимо использовать шестиходовой дефлегматор, так как скорость возрастает в число раз равное числу ходов, а в случае, когда в качестве основного критерия применяется минимизация затрат – четырехходовой.
Для изготовления аппарата выбрана нержавеющая сталь марки 12Х18Н10Т по ГОСТ 5949-75 с коэффициентом теплопроводности .
Список использованной литературы
1. Основные процессы и аппараты химической технологии /Пособие по проектированию/, Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под. ред. Ю.И. Дытнерского, 2-ое изд. перераб. и дополнен. М: Химия, 1991 – 496 с.
2. Справочник химика том V, под ред П.Г.Романкова, 2-ое изд. перераб. и дополнен.Л Химия, 1968-975с.
3. Примеры и задачи по курсу процессов и аппаратов химической технологии /Учебное пособие/, К.Ф. Павлов, П.Г. Романков, А.А. Носков, 9-ое изд. перераб. и дополнен. Л. Химия,1987-575с.
4. Курсовое проектирование по процессам и аппаратам химической технологии. Краткие справочные данные /Метод указания/. ЛТИ им. Ленсовета – Л.: 1989, 40 с.
... трубопровода: (3.7) . При данном числе Рейнольдса режим движения турбулентный. Режим движения этанола на напорном участке трубопровода от теплообменника до ректификационной колонны: (3.8) где - коэффициент вязкости при t=85°С . Следовательно, режим движения турбулентный. Скорость движения этанола в трубках аппарата: , ...
... применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки). Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. 2. Теоретические основы расчета тарельчатых ректификационных колонн Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический ( ...
... содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом). 3 Расчётная часть 3.1 Задание и исходные данные Необходимо рассчитать насадочную ректификационную колонну для разделения бинарной смеси диоксан – толуол. GD=1000 кг/ч, xF=45% (мол.), xD=90% (мол.), xW=2% (мол.). Давление в колонне составляет 600 мм рт. ст., смесь поступает при температуре ...
... ректификационная колонна 5-куб-испаритель 6-дефлегматор 7-теплообменник 8-промежуточная ёмкость 9-насос 10- теплообменник 11-ёмкость. ЗАДАНИЕ №1 «Расчет ректификационной колонны непрерывного действия» Провести расчет ректификационной колонны непрерывного действия для разделения смеси бензол-толуол с определением основных геометрических размеров колонного аппарата, производительность ...
0 комментариев