1.7 Расчет требуемой чувствительности приемного тракта

Шумовая полоса приемника:

Чувствительность приемного тракта определим из соотношения:

 

1.8 Расчет коэффициента усиления приемника до детектора и распределение усиления по трактам

Распределение усиления в приемнике определяется двумя противоречивыми условиями ([2] с. 90):

а) с одной стороны, следует стремиться к увеличению усиления во входных цепях и каскадах приемника, так как чем больше коэффициент усиления по мощности первого и следующих за ним каскадов, тем меньше общий коэффициент шума приемника и лучше его чувствительность;

б) с другой стороны, усиление во входных каскадах приемника с точки зрения многосигнальной избирательности должно быть небольшим, чтобы амплитуда сигнала (полезного и мешающего) не превышала диапазона линейности первого, второго и т. д. каскадов УРЧ, первого преобразователя и т. д. до фильтра основной селекции, относительно слабо защищенных перестраиваемыми по диапазону избирательными системами.

Структура каскадов преселектора определяется требованиями к коэффициенту шума и ясна из предварительного расчета. Теперь найдем количество каскадов в тракте УПЧ.

На основании расчитанных ранее величин, мощность сигнала на входе УПЧ составит:

Напряжение сигнала на входе первого каскада УПЧ при согласовании этого каскада со смесителем и входной проводимости каскада примерно равной проводимости предполагаемого к применению транзистора (проводимость делителя смещения gдел << g11э):

Для нормальной работы импульсного детектора в линейном режиме требуется, чтобы напряжение на его входе Uвх_дет = (0.5 ... 3) В. Возьмем:

ринимаем коэффициент запаса для учета старения электронных приборов в процессе эксплуатации:

Тогда требуемый коэффициент усиления тракта промежуточной частоты:

Так как не предъявлено жестких требований к избирательности, то выбираем УПЧ с распределенной избирательностью и одноконтурными настроенными каскадами.

Полагаем усиление каждого каскада равным устойчивому в схеме с каскодным соединением. Ранее мы вычислили этот коэффициент. Тогда минимальное число каскадов для получения заданного усиления:

Округляем до ближайшего большего целого:

Уточняем усиление каждого каскада:

Находим коэффициент расширения полосы каждого каскада [1] c. 272:

Определяем необходимое эквивалентное затухание контуров:

 


 

1.10 Составление структурной схемы приемника

На основании предварительного расчета была определена структура приемника и получены исходные данные для электрического расчета отдельных каскадов.

Структурная схема проектируемого приемника приведена на рисунке .

Рисунок 2. Структурная схема проектируемого приемника.

Резонансный усилитель УПЧ и УРЧ.

Смеситель.

Радиочастотный генератор гармонических сигналов - гетеродин.

Детектор радиоимпульсов.


2. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ

 

2.1 Проектирование антенного переключателя

Защиту входного каскада радиолокационного приемника от перегрузки и повреждения СВЧ сигналами от собственного передатчика РЛС или от внешних источников помех в полосе рабочих частот осуществляют разрядниками защиты приемника (РЗП) и ограничителями СВЧ мощности на плупроводниковых диодах.

В целом эти устройства объединяются в антенный переключатель (АП).

С помощью АП осуществляют подключение антенны к тракту передатчика и запирание приемника на время излучения мощного импульсного сигнала, а после окончания действия импульса - подключение с минимальной задержкой выхода антенны к входу приемника и отключение тракта передатчика. Выбор конкретного типа АП зависит от мощности зондирующего сигнала и вида устройств, следящих за АП. При импульсной мощности сигнала порядка 100-150 кВт. АП обычно строят по следующей схеме: ферритовый циркулятор, РЗП и диодный резонансный СВЧ-ограничитель. При мощности излучаемого сигнала 1-2 кВт и менее разрядник может быть исключен.

Схема АП показана на рисунке.

Рисунок 3. Схема антенного переключателя.

Циркулятор E - устройство, обладающее следующими свойствами: при подаче сигнала на плечо 1 циркулятора выходной сигнал появляется в плече 2 с очень малым (порядка 0.2…0.5 дБ) ослаблением, в то время как в плече 3 он существенно (на 13 … 25 дБ) ослабляется. Аналогично, при поступлении на плечо 2 он без ослабления появляется на плече 3 и не проходит на выход плеча 1. В АП вместо четырехплечего циркулятора используют два трехплечих циркулятора, соединенных последовательно, которые проще в изготовлении и обладают меньшими потерями.

В АП сигнал от передатчика (сигнал высокого уровня) поступает на плечо 1 циркулятора E1 и через плечо 2 поступает в антенну. Лишь небольшая ослабленная по мощности часть сигнала проходит на плечо 3 и через циркулятор E2 попадает на вход разрядника U1. Мощности сигнала достаточно для зажигания разрядника, на который через сопротивление резистора R1, равное 2 … 4 МОм, подают напряжение поджига Uпд = 700 В (Pз < 150 … 1000 мВт). Разрядник создает в линии передачи практически короткое замыкание, и СВЧ-сигнал, отражаясь от него в направлении к циркулятору E2, поглощается в согласованной нагрузке Rп, чем достигается защита УСВЧ или смесителя от выжигания.

После зажигания поступающая мощность резко уменьшается и составляет не более 50 ... 70 мВт. Выделяющиеся энергия СВЧ и мощность во время действия плоской части импульса могут вывести из строя или необратимо ухудшить параметры диодов ППУ или смесителя.

Для предотвращения этого после разрядника ставят резонансный СВЧ-ограничитель, включаемый в основную линию через отрезок линии длиной l / 4. Он представляет собой параллельное соединение разомкнутого емкостного шлейфа l1 и последовательно соединенных ограничительного диода VD1 и короткозамкнутого шлейфа l2.

Для сигнала высокого уровня диод VD1 эквивалентен последовательному соединению индуктивности выводов (порядка 0.2 … 2 нГ) и малого активного сопротивления потерь Rв = 1.3 … 2 Ом. Последовательно соединенные диод, короткозамкнутый шлейф l2 (его реактивное сопротивление носит индуктивный характер) и разомкнутый емкостный шлейф l1 (eгo емкость C1) образуют параллельный резонансный контур. Волновое сопротивление шлейфов l1 и l2 выбирают порядка 40 Ом. Сопротивление контура при резонансе достаточно велико и четвертьволновый отрезок линии l3 оказывается практически разомкнут, а его входное сопротивление близко нулю. Вследствие этого просачивающаяся энергия отражается в обратном направлении. Ослабление сигнала высокого уровня в ограничителе составляет 15 … 20 дБ, что обеспечивает работу последующих устройств.

Отраженный от цели сигнал (сигнал низкого уровня) поступает из антенны сначала на плечо 2 циркулятора E1, потом на плечо 3, а затем на плечо 1 E2 и через его выходное плечо 2 на вход разрядника U1. Мощность такого сигнала недостаточна для зажигания U1. Прямые потери сигнала в U1 составляют 0.3 … 1,5 дБ.

Совместно с отрезком длиной l2 диод образует последовательный колебательный контур, сопротивление которого при резонансе равно rп = 18 ... 20 Ом и мало по сравнению с волновым сопротивлением основной линии Z0. Таким образом, к отрезку длиной l1 подключена нагрузка, сопротивление которой Zн = rн + l / (j C1), т. е. отрезок длиной l1 практически замкнут накоротко, его входное сопротивление очень велико и ослабление полезного сигнала практически отсутствует (L = 0,1 ... 0,3 дБ). Для замыкания постоянной составляющей тока ограничителя в точке подсоединения диода включен короткозамкнутый четвертьволновый отрезок с максимально возможным с точки зрения технической реализации значением Z0 = 85 ... 95 Ом. Полоса пропускания АП составляет 3 ... 10 % от несущей.

Произведем расчет антенного переключателя.

Пусть требуется рассчитать резонансный ограничитель 3-см диапазона волн.

Рабочая частота.

Промежуточная частота.

Волновое сопротивление подводящих линий.

Потери запирания (в дБ).

Потери запирания (в разах).

Параметры ограничительных диодов даны в таблице 3.

 

Таблица 3.

Выберем бескорпусной ограничительный диод со следующими параметрами:

Емкость перехода.

Сопротивление потерь диода на низком уровне мощности.

Сопротивление потерь диода на высоком уровне мощности.

Последовательная индуктивность выводов диода.

Максимальная рассеиваемая средняя мощность.

Минимальная критическая частота диода.

Расчет ограничителя будем производить на основе заданной величины Lзап , считая, что в данном примере важно получить не максимально возможные потери запирания, а минимальные потери пропускания. Последние находим по формуле:

Потери пропускания в дБ.

Практически потери Lпр будут несколько выше за счет потерь в отрезках микрополосковых линий.

Оценим полосу запирания ограничителя:

Рассчитаем максимально допустимые уровни импульсной Ри_пд_макс и средней Рпд_макс СВЧ мощности, которые можно подводить ко входу ограничителя.

Полагая, что при импульсном режиме работы скважность q = l / (Fпос и) = 1000, где fпос - частота посылок импульсов, и - длительность последних, определяем:

Основным недостатком диодных ограничителей является относительно небольшой допустимый уровень импульсной мощности Ри_пд_макс от сотен ватт до 1-2 кВт. Для устранения этого недостатка и объединения достоинств РЗП и ограничителей используют так называемые разрядники-ограничители. Они представляют собой сочетание РЗП (нередко без электрода вспомогательного разряда), и следующего за ним диодного ограничителя. Разрядники-ограничители, не требующие никаких источников питания, выдерживают большие импульсные мощности (свыше 10 кВт) и обеспечивают защиту приемника от всех возможных сильных сигналов помех.

Параметры ряда разрядников-ограничителей приведены в таблице 4.

Таблица 4.

Учитывая частотный диапазон проектируемого антенного переключателя, выберем РЗП типа РР6. Для него:

Ослабление зеркального канала при нижней настройке гетеродина за счет РЗП:

То же в децибелах:

 


Информация о работе «Расчет приемника наземной обзорной РЛС»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 46464
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
51777
2
7

... году появились несколько патентов различные РЛС УВД. 1.  G01S9/56 342-37 920616 Том 1139 №3 Способ и устройство для системы воспроизведения информации наземной РЛС. Система управления воздушным движением /УВД/ содержит РЛС обнаружения, радиомаяк и общий цифровой кодер для сопровождения самолетов и устранения возможности столкновений. В процессе передачи данных на систему УВД производится ...

Скачать
45419
3
0

... обзора земли с целью обеспечения возможности автономной навигации по характерным наземным радиолокационным ориентирам.   3. Обоснование, выбор и расчет тактико-технических характеристик радиолокационной станции 3.1. Обоснование, выбор и расчет тактических характеристик РЛС 3.1.1. Максимальная дальность действия RmaxМаксимальная дальность действия задается тактическими требованиями и зависит ...

Скачать
24418
2
2

... внедрением автоматизированных систем управления воздушным движением (АС УВД), использованием последних достижений вычислительной техники, более современных радиоэлектронных средств управления воздушным движением, навигации, посадки и связи, совершенствованием методов и средств технической эксплуатации авиационной техники. Аналитический обзор аэродромных РЛС Аэродромные обзорные РЛС (ОРЛ-А) ...

Скачать
27556
0
10

... , работающих на частоте, близкой к частоте РЛС и др. Мы далее будем рассматривать только организованные (умышленные) помехи, создаваемые специально для подавления работы радиолокационных станций. Организованные помехи делятся на пассивные, создаваемые отражателями, и активные, излучаемые специальной аппаратурой. Пассивные помехи Применение пассивных помех основано на явлении отражения, или ...

0 комментариев


Наверх