1.3 Главная передача
Применяемая при поперечном расположении двигателя в переднеприводных автомобилях, цилиндрическая главная передача размещается в общем картере с коробкой передач и сцеплением. Шестерня главной передачи закрепляется на ведомом валу коробки передач, а иногда выполняется за одно целое с этим валом и устанавливается консольно. При консольной установке шестерни главная передача и дифференциал могут быть несколько сдвинуты в сторону двигателя, тем самым уменьшается разница длины полуосей. С той же целью колесо закрепляется на картере дифференциала, обычно с левой по ходу автомобиля стороны.
В существующих конструкциях зубья цилиндрической передачи выполняются прямыми («Форд Фиеста»), косыми (ВАЗ-2108, «Фиат Уно»), шевронными (Хонда).
Передаточное число цилиндрической пары обычно принимают 3,5...4,2. Так как число зубьев шестерни для обеспечения плавности зацепления должно быть не менее десяти, то при большем передаточном числе размеры зубчатого колеса увеличиваются, в результате чего снижается дорожный просвет и повышается уровень шума при работе главной передачи. КПД цилиндрической пары — не менее 0,98.
1.4 Дифференциалы трансмиссии автомобиля
Анализ и оценка конструкции дифференциала автомобиля
На автомобиле ВАЗ-2108 применяется симметричный конический сателитный дифференциал. Симметричные конические дифференциалы наиболее распространенные (их часто называют простыми). Применяются они как на легковых, так и грузовых автомобилях, в качестве межколесных, а иногда и межосевых дифференциалов.
Для обеспечения смазки сателлитов оси в месте посадки сателлитов должны иметь лыски или спиральные канавки, удерживающие масло. Сателлиты и полуосевые шестерни выполняются прямозубыми. Число зубьев сателлитов и полуосевых шестерен может быть четным и нечетным, но для обеспечения сборки должно подчиняться условию 2zш / n = k,
где zш — число зубьев полуосевой шестерни; п — число сателлитов, k — целое число.
К преимуществам простого конического дифференциала следует отнести:
- обеспечение устойчивости при движении по скользкой дороге и торможении двигателем благодаря равенству тангенциальных реакций на ведущих колесах;
- простоту устройства, малые размеры и массу, надежность, высокий КПД.
Отрицательным качеством является ограничение проходимости.
Нагрузки в дифференциале
В коническом дифференциале определяют нагрузки на зубья сателлитов, полуосевых шестерен, крестовину и нагрузки со стороны сателлитов на корпус дифференциала.
Нагрузку на зубья сателлита и полуосевых шестерен оределяют из условия, что окружная сила распределена поровну между всеми сателлитами и каждый сателлит передает усилие двумя зубьями. Окружная сила, действующая на один сателлит,
Рс = Мкmах uкп1uгп/(r1 nс),
где r1 — радиус приложения; nс — число сателлитов (рис. 10).
Рисунок 10. Схема сателлита
Напряжение изгиба определяется по ГОСТ 21354—87. Износ зубьев не учитывается.
Материал сателлитов и полуосевых шестерен: сталь 18ХГТ, 25ХГМ, 20ХН2М; [σи] =500...800 MПa.
Шип крестовины (18ХГТ, 20ХНЗА и др.) под сателлитом испытывает:
- напряжение смятия
σсм = Pc/(dl1), [ σсм] =50...60 МПа;
- напряжение среза
τср = 4Рс/(πd2), [τср] =100...120 МПа;
- напряжение смятия в месте крепления в корпусе дифференциала под действием окружной силы Рд = Мкmах uкп1uгп/(r2 nс):
σсм = Pд/(dl2), [σсм] =50...60 МПа.
Давление торца сателлита на корпус дифференциала определяется напряжением смятия:
σсм = Pxc/ F, [σсм]=10...20 МПа,
где Pxc = Рс tgαω sinδc (αω — угол зацепления; δc — половина угла конуса сателлита).
1.5 Силовые приводы, валы и полуоси трансмиссии автомобиля
Карданные передачи применяются в трансмиссиях автомобилей для силовой связи механизмов, валы которых не соосны или расположены под углом, причем взаимное положение их может меняться в процессе движения. Карданные передачи могут иметь один или несколько карданных шарниров, соединенных карданными валами, и промежуточные опоры. Карданные передачи применяют также для привода вспомогательных механизмов, например, лебедки. В ряде случаев связь рулевого колеса с рулевым механизмом осуществляется при помощи карданной передачи.
Привод пдреднего колеса:
1 - корпус наружного шарнира; 2 - стопорное кольцо; 3 - обойма; 4 - шарик; 5 - наружный хомут; 6 - сепаратор; 7 - упорное кольцо; 8 - защитный чехол; 9 - внутренний хомут; 10 - вaл привода колеса; 11 - фиксатор внутреннего шарнира; 12- корпус внутреннего шарнира; 13 - стопорное кольцо корпуса внутреннего шарнира; А - контрольный размер
Методика расчёта привода трансмиссии автомобиля
Упругий полукарданный шарнир должен центрироваться, иначе балансировка карданного вала может нарушиться.
В основе всех конструкций карданных шарниров равных угловых скоростей лежит единый принцип: точки контакта, через которые передаются окружные силы, находятся в биссекторной плоскости валов.
Для пояснения этого рассмотрим простейшую модель, приведенную на рисунке 12.
Окружная скорость точки контакта О υO = ω1r1; υO = ω2r2, откуда ω1r1 = ω2r2. Подставив в это равенство значения r1 = AOsinα и r2 = BOsinβ получим ω1AOsinα = ω2BOsinβ. Угловые скорости ведущего и ведомого валов равны, если АО = ВО; α = β.
Легко показать, что в этом случае точка О лежит в биссекторной плоскости. Это видно из равенства треугольников ОО'С и OO'D.
Рисунок 12. Схема карданного шарнира равных угловых скоростей
Расчет размеров деталей карданной передачи
Карданный вал. Во время работы карданный вал испытывает изгибающие, скручивающие и осевые нагрузки.
Изгибающие нагрузки возникают в результате неуравновешенности карданного вала, и в некоторой степени пары осевых сил, нагружающих шипы крестовины карданного шарнира. В эксплуатации неуравновешенность может появиться не только в результате механических повреждений карданного вала, но также при износе шлицевого соединения или подшипников карданных шарниров. Неуравновешенность приводит к вибрациям в карданной передаче и возникновению шума. Карданный вал подвергается тщательной динамической балансировке на специальных балансировочных станках. Допустимый дисбаланс зависит от максимального значения эксплуатационной угловой скорости карданного вала и находится в пределах (15... 100) г∙см.
Даже хорошо уравновешенный вал в результате естественного прогиба, вызванного собственным весом, при некоторой угловой скорости, называемой критической, теряет устойчивость; его прогиб возрастает настолько, что возможно разрушение вала.
Пусть в статическом положении ось вала смещена на расстояние е от оси вращения, а при угловой скорости ω получает прогиб f . Тогда при вращении карданного вала возникает центробежная сила
Pu = mв (e + f) ω 2,
где mв — масса вала.
Рисунок 13. Схема для определения критической скорости карданного вала
Центробежная сила уравновешивается силой упругости вала
Ру = си f,
где си — изгибная жесткость.
Поэтому
или
Если си → mвω2, то f → ∞.
Критическая угловая скорость, вызывающая бесконечно большой прогиб,
,
соответственно критическая частота вращения вала
nкр = 30 ωкр / π
nкр = 30шкр/я,
где си = qвlв / f (qв — вес вала, отнесенный к его длине; lв — длина вала).
Прогиб вала определяется в зависимости от принятой схемы его нагружения. Будем считать карданный вал нагруженной равномерно балкой на двух опорах со свободными концами. Прогиб балки
f = 5qвlв4 / (384EJи),
где E = 2∙105 МПа — модуль упругости первого рода; — момент инерции поперечного сечения вала (dн и dвн — соответственно наружный и внутренний диаметры вала).
Масса вала определяется из выражения
,
где γ — плотность материала вала.
Подставив значения си и тв, получим выражение для критической частоты вращения вала:
полого
сплошного
Если считать карданный вал балкой с защемленными опорами, то числовой коэффициент в формуле следует принимать большим в 1,5...2,25 раза.
Критическая частота вращения карданного вала должна быть в 1,5...2 раза больше максимальной эксплуатационной. Для повышения критической частоты вращения следует уменьшать длину вала, что особенно эффективно, и увеличивать как наружный, так и внутренний диаметры. Внутренний диаметр трубчатого вала можно увеличивать до определенного предела (лимитирует прочность вала).
Скручивающие нагрузки:
Трубчатый вал изготовляют из малоуглеродистой стали (сталь 15, сталь 20), не подвергая ее закалке. Толщина стенок обычно не превышает 3,5 мм (для автомобилей ВАЗ — 2 мм; КамАЗ —3,5 мм).
Напряжение кручения трубчатого вала
; [τкр] = 100...120МПа.
Приваренные к трубе шлицованный наконечник и вилку изготовляют из легированной или углеродистой конструкционной стали 30, 35Х или 40.
Напряжение кручения сплошного вала
; [τкр] = 300...400 МПа.
При передаче крутящего момента карданный вал закручивается на некоторый угол
где J0 — момент инерции сечения вала (трубчатого , сплошного ); G — модуль упругости при кручении, G = 850 ГПа.
Допускаемый угол закручивания 7...8° на 1 м длины вала.
Скручивающие нагрузки вызывают смятие и срез шлицев вала. Напряжение смятия шлицев от сил, действующих по их среднему диаметру,
, [σсм] = 15…20 МПа
где dш.н, dш.вн — наружный и внутренний диаметры шлицевого конца вала; nш — число шлицев; lш — длина шлица.
Напряжение среза (считая, что шлицы срезаются у основания по диаметру dш.вн; bш — ширина шлица)
[τср] =25...30 МПа
Осевые нагрузки в карданной передаче возникают в шлицевом соединении при перемещениях, связанных с изменением расстояния между шарнирами, например при колебаниях кузова на рессорах. Исследования показали, что даже при наличии большого количества смазочного материала последний не удерживается на поверхности трения и перемещение в шлицевом соединении происходит в условиях граничного трения. При этом коэффициент трения μ = 0,2, а иногда (при появлении задиров) μ = 0,4. При передаче большого крутящего момента в шлицевом соединении происходит защемление, и карданный вал, по существу, передает тяговое усилие. При этом двигатель, установленный на упругих подушках, продольно смещается в некоторых автомобилях на 10 мм, а иногда и больше. Большие осевые силы (в грузовых автомобилях 20...30 кН) независимо от того, смазано шлицевое соединение или нет, создают дополнительные нагрузки на карданные шарниры, промежуточную опору карданной передачи, а также на подшипники коробки передач и главной передачи. Повышенное трение в шлицевом соединении приводит к быстрому изнашиванию шлицев и к нарушению в связи с этим балансировки карданной передачи.
Осевые силы являются одной из главных причин того, что долговечность карданных передач в 2...3 раза ниже долговечности основных агрегатов автомобиля. Осевая сила
Сечение трубы карданного вала определяют исходя из напряжения на кручение:
τт=16ТmахDн/π(D4н –D4вн),
где τТ — предел текучести материала вала.
... материала, изменения структуры металла листовой стали при штамповке и гибке, действующих на кузов нагрузок, а также исходя из принятых в автомобилестроении подходов. 2.2 Ход построения модели кузова автомобиля ВАЗ 2108(09) За основу при построении модели используется твёрдое тело. Оно создаётся методом добавления материала между двумя или более профилями, в нашем случае используется девять ...
... проведен анализ сервисных характеристик АТП 10 г. Новомосковска. Предложено для повышения конкурентоспособности этого предприятия создать на его территории пост технического обслуживания и ремонта карбюраторов двигателей легковых автомобилей. Пост следует организовать и укомплектовать современным оборудованием так, что бы на нем смогли не только проверить работоспособность карбюратора двигателя ...
... Выбор и проектирование заготовки 2.1 Выбор способа получения заготовки Изначально определяем, что заготовку корпуса главного цилиндра гидротормозов можно получить двумя способами: литьем в земляные формы и литьем в металлические армированные формы. Второй способ практически не используется для изготовления отливок из чугуна. Эти методы в одинаковой степени позволяют достичь заданной точности ...
... . Дается реклама в газетах, на радио, по телевидению в виде бегущей строки и рекламного ролика. Так же выставляются рекламные щиты. 2.8. Оценка конкурентоспособности автомобилей, реализуемых ОАО «Покровск-Лада» Конкурентоспособность – важнейшая особенность товаров-конкурентов, базирующаяся на определенных принципах: комплексность, относительность, социальная адресность [9]. Комплексность ...
0 комментариев