3.2 Определяем межосевое расстояние

Определяем модуль упругости

 

где, - модули упругости материалов червяка колеса.

,

тогда межосевое расстояние

Межосевое расстояние округляем по ряду 40 и принимаем  

По формуле 9.3[2] определяем модуль

Округляем до стандартного ближайшего значения m=5. Далее находим необходимый коэффициент смещения

 

3.3 Проверка скорости скольжения

 

где - угол подъема винтовой линии, его можно найти из выражения [2]

 по формуле 9.8 [2]

Было принято 3,4 м/c –материал БРАЖ9-4 сохраняем. Сохраняем и [σ].

3.4 Проверка прочности по контактным напряжениям

Прочность проверяем по формуле 9.16[2]

Где α=20 ; где - коэффициент динамической нагрузки.  - коэффициент концентрации нагрузки. -коэффициент учитывающий уменьшение длинны контактной линии.  -торцовый коэффициент перекрытия в средней плоскости червячного колеса.

 ,тогда:

Прочность соблюдается

3.5 Проверка прочности на изгиб

Используем формулу 9.21

 

Ширину червячного колеса определяем из выражения b=0.75d. Для определения диаметра окружности вершин определим

 

По формуле §9.7 и таб. 9.4[2] определяем допускаемые напряжения изгиба.

Зная все составляющие, проверяем прочность на изгиб.

Ранее было принято . Таким образом запасы прочности достаточно большие.

3.6 Определение основных размеров

 

диаметр окружности впадин червяка.

По таб. 9.1[2] ширина червяка:

Учитывая примечание таб. 9.1[2] принимаем

Определяем размеры колеса.


4 Расчет валов

4.1 Проектный расчет валов

Определяем расстояние между опорами.

 

длинна ступицы червячного колеса

Х=10 мм – зазор между зубчатыми колесами и внутренними стенками корпуса редуктора.

W=100 мм – ширина стенки корпуса в месте установки подшипников. Определяем исходя из передаваемого момента Т2=1167,9 Нм. Определяем диаметр вала под шестерней.

Принимаем диаметр вала под подшипниками  

4.2 Проверочный расчет тихоходного вала  

Определяем силы в зацеплении.

Определим реакции в эпюрах и строим эпюры изгибающих моментов, а также эпюры крутящих моментов.

Рассмотрим реакции от сил , действующих в вертикальной плоскости.

Сума проекций

 

Сумма моментов

Выражаем В1

В1=Fr/2-Fad/2l=11646.06/2-13250.073/2×0.2=5581.22 H

Реакция от сил Ft и Fм действующих в горизонтальной плоскости

A2+B2+Fм-Ft=0

Сумма моментов



Информация о работе «Проектирование привода цепного конвейера»
Раздел: Промышленность, производство
Количество знаков с пробелами: 16774
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
12865
1
46

... Uоб =40,3 2. Кинематический расчет привода 2.1 Общее передаточное число привода 2.2 Частоты вращения Что соответствует задачи 3. Силовой расчет 3.1 Находим рассчитанную мощность привода, как можно наибольшую размерную величину а) б) 3.2 Определяем мощность на валах 3.3 Определяем моменты на валах 3.4 Данные сводим в таблицу № вала ni мин-1 ...

Скачать
29501
5
1

... (C/P) 3 ;αh =106/ (60·200) · (19,5/1,521) 3=175604 часов. эта величина превышает заданный расчетный срок службы привода tP=9928 часов.   6.4 Выбор муфт   Для соединения тихоходного вала редуктора с барабаном (поз.5) конвейера используем упругую втулочно-пальцевую муфту (МВП), типоразмер которой выбираем по величине наибольшего диаметра соединяемых валов с учетом ограничения Т< [T], ...

Скачать
41198
10
21

... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...

Скачать
54387
13
4

... отверстий: Dотв. = Doбода - dступ.) / 4 = (510 - 112) / 4 = 99,5 мм = 100 мм. Фаска: n = 0,5 x mn = 0,5 x 3,5 = 1,75 мм Округляем по номинальному ряду размеров: n = 2 мм. 6.    Выбор муфты на выходном валу привода В виду того, что в данном соединении валов требуется невысокая компенсирующая способность муфт, то допустима установка муфты упругой втулочно-пальцевой. Достоинство данного типа ...

0 комментариев


Наверх