2.1 Простые числа. Решето Эратосфена

 

Каждое натуральное число, большее единицы, делится, по крайней мере, на два числа: на 1 и на само себя. Если ни на какое другое натуральное число оно нацело не делится, то называется простым, а если у него имеются ещё какие-то целые делители, то составным. Единичка же не считается ни простым числом, ни составным.

Небольшую "коллекцию" простых чисел можно составить старинным способом, придуманный ещё в 3 в. до н. э. Эратосфеном Киренским, хранителем знаменитой Александрийской библиотеки.

Выпишем несколько подряд идущих чисел, начиная с 2. Двойку отберём в свою коллекцию, а остальные числа, кратные 2, зачеркнем. Ближайшим незачёркнутым числом будет 3. Возьмём в коллекцию и его, а все остальные числа, кратные 3, зачеркнем. При этом окажется, что некоторые числа уже были вычеркнуты раньше, как, например, 6, 12 и др. Следующее наименьшее незачёркнутое число – это 5. Берем пятерку, а остальные числа, кратные 5,зачеркиваем. Повторяя эту процедуру снова и снова, в конце концов добьемся того, что незачеркнутыми останутся одни лишь простые числа – они словно просеялись сквозь решето. Поэтому такой способ и получил название "решето Эратосфена".


Простых чисел бесконечное множество.

2.2 Числа – близнецы

 

Два простых числа, которые отличаются на 2, как 5 и 7, 11 и 13, 17 и 19, получили название "близнецы". В натуральном ряду имеется даже "тройня" - это числа 3, 5, 7. Ну а сколько всего существует близнецов - современной науке неизвестно.

В пределах первой сотни близнецы – это следующие пары чисел: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71,73). По мере удаления от нуля близнецов становится все меньше и меньше. Близнецы могут собираться в скопления, образуя четверки, например, (5, 7, 11, 13) или (11, 13, 17, 19). Как много таких скоплений – тоже пока неизвестно.

 

2.3 Проблема Гольдбаха

 

В 1742 г. член Петербургской Академии наук Гольдбах в письме к Эйлеру высказал предложение, что любое целое положительное число, большее пяти, представляет собой сумму не более чем трех простых чисел.

50 = 47 + 3, 46 = 43 + 3, 32 = 29 + 3.

Гольдбах испытал очень много чисел и ни разу не встретил такого числа, которое нельзя было бы разложить на сумму двух или трех простых слагаемых. Но будет ли так всегда, он не доказал. Долго ученые занимались этой задачей, которая названа "проблемой Гольдбаха" и сформулирована так, требуется доказать или опровергнуть предложение:

Всякое число, большее единицы, является суммой не более трех простых чисел.

Л. Эйлер ответил Х. Гольдбаху, что он высказывает (без доказательства) еще более интересную догадку: "Всякое четное натуральное число, большее двух, представляет собой сумму двух простых чисел".

12 = 5+ 7; 64 = 59 + 5 = 41 +23 = 47 +17; 28 = 11 + 17 = 23 + 5;

162 = 157 + 5 = 151 + 11 = 139 + 23 = 131 + 31.

Почти 200 лет выдающиеся ученые пытались разрешить проблему Гольдбаха – Эйлера, но безуспешно.


Глава 3. Фигурные числа

 

3.1 Фигурные числа

 

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, то получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три.

 

 

Фигурные числа — общее название чисел, связанных с той или иной геометрической фигурой.

Различают следующие виды фигурных чисел:

Линейные числа — числа, не разлагающиеся на множители, то есть их ряд совпадает с рядом простых чисел, дополненным единицей: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, …

Плоские числа — числа, представимые в виде произведения двух сомножителей, то есть составные: 4, 6, 8, 9, 10, 12, 14, 15, …

Телесные числа — числа, представимые произведением трёх сомножителей: 8, 12, 16, 18, 20, 24, 27, 28, …

 


3.2 Многоугольные числа

 

Выкладывая различные правильные многоугольники, можно получить разные классы многоугольных чисел. Предположительно от фигурных чисел возникло выражение: "Возвести число в квадрат или в куб".

Последовательность треугольных чисел: 1, 3, 6, 10, 15, 21, 28, 36, 4 и т.д. (1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д.)

Квадратные числа представляют собой произведение двух одинаковых натуральных чисел, то есть являются полными квадратами: 1, 4, 9, 16, 25, 36, и т.д. (1+3=4, 1+3+5=9, 1+3+5+7=16).

Пятиугольные числа 1, 5, 12, 22, 35, 51, 70, 92, 117, 145

Пирамидальные числа возникают при складывании круглых камушков горкой так, чтобы они не раскатывались. Получается пирамида. Каждый слой в такой пирамиде - треугольное число. Наверху один камушек, под ним - 3, под теми - 6 и т.д.: 1, 1+3=4, 1+3+6=10, 1+3+6+10=20, ...

 

Кубические числа возникают при складывании кубиков: 1, 2·2·2=8, 3·3·3=27, 4·4·4=64, 5·5·5=125... и так далее.


Глава 4. Дружественные, совершенные, компанейские числа

 

4.1 Дружественные числа

Дружественные числа – это два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и сумма всех делителей второго числа (кроме него самого) равна первому числу. По свидетельству античного философа Ямвлиха, великий Пифагор на вопрос, кого считать своим другом, ответил: "Того, кто является моим вторым Я, как числа 220 и 284".

История дружественных чисел теряется в глубине веков. Эти удивительные числа были открыты последователями Пифагора. Правда пифагорейцы знали только одну пару дружественных чисел – 220 и 284. Проверим эту пару чисел на свойство дружественных чисел:

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284,

1 + 2 + 4 + 71 + 142 = 220.

Долго считалось, что следующую пару дружественных чисел 17296 и 18416 открыл в 1636 году знаменитый французский математик Пьер Ферма. Но недавно в одном из трактатов арабского ученого Ибн аль-Банны (1256-1321) были найдены строки: "Числа 17296 и 18416 являются дружественными. Аллах всеведущ".

А задолго до Ибн аль-Банны другой арабский математик абу-Хасан Сабит ибн Курра (836-901) сформулировал правило, по которому можно получить некоторые дружественные числа:

если для некоторого n числа p=3·2n-1-1, q=3·2n-1 и r=9·22n-1-1 простые, то числа A=2npq и B=2nr - дружественные.

При n=2, числа p=5, q=11, r=71 простые, и получается пара чисел Пифагора: 220 и 284.

При n=4, числа p=23, q=47, r=1151 простые, и получается пара чисел Ибн аль-Банны и Ферма 17296 и 18416.

При n=7 получается пара чисел, найденная в 1638 году французским математиком и философом Рене Декартом.

После Декарта первым получил новые дружественные числа Леонард Эйлер. Он открыл 59 пар дружественных чисел, среди которых были и нечетные числа, например, 9773505 и 11791935. Он предложил пять способов отыскания дружественных чисел. Эту работу продолжили математики следующих поколений. В настоящее время известно около 1100 пар дружественных чисел. В 1867 году шестнадцатилетний итальянец Никколо Паганини потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Пару чисел 220 и 284 стали считать символом дружбы. В Средние века имели хождение талисманы с выгравированными на них числами 220 и 284, якобы способствующими укреплению любви.

Дружественные числа продолжают скрывать множество тайн. Например, есть ли пары, в которых одно число четное, а другое - нечетное? Конечно или бесконечно число пар дружественных чисел? Существует ли общая формула, позволяющая описать все пары дружественных чисел?

 


Информация о работе «Удивительные числа»
Раздел: Математика
Количество знаков с пробелами: 21645
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
16947
0
6

... другого случая экспериментально подтверждены. Хорошее соответствие теории и эксперимента свидетельствует о разумности предположений, сделанных относительно механизма возникновения регулярного рельефа на поверхности упаковочной пленки. Регулярность фрагментации жесткой оболочки связана, кроме того, с особенностями передачи механического напряжения от податливого основания твердому покрытию через ...

Скачать
28177
9
11

... из-за постоянного намерзания льда снизу. Как же возможно такое сплошное течение льда в порах, если их стенки имеют многочисленные выступы и неровности? Здесь мы сталкиваемся еще с одним удивительным явлением, которое продемонстрировал в конце позапрошлого века английский ученый Дж.Баттомли. Он медленно перерезал массивный блок льда с помощью обычной проволоки, но блок не распадался на куски, а ...

Скачать
5670
0
0

... заклеймено ярлыком “искусство ради искусства”. И долгое время никто не желал видеть всю красоту его творчества, в котором отразились удивительно безнадежные взгляды поэта на жизнь, ибо на вопрос о настроении его души он всегда отвечал: “Пустыня!” Еще в 1850 году А. Фет писал: “Идеальный мир мой разрушен давно...” Место этого мира заняла будничная жизнь. И чем больше поэт погружался в нее, тем ...

Скачать
25174
0
0

... звука- это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковые по своей громкости слуховые восприятия. Так, например, звуки, одинаковые по интенсивности, но различающиеся по высоте, воспринимаются ухом с разной громкостью в зависимости от особенностей слухового аппарата. Мы не воспринимаем как очень слабые, так и очень ...

0 комментариев


Наверх