2. Анализ надежности СУУ-400

Расчёт основан на статистических данных полученных в а/к “Волга-Днепр” за период с января 1993 года по сентябрь 2005 года. Статистические данные собраны по 10-ти самолетам Ан-124-100 “Руслан”.

2.1 Качественный анализ надежности

Для качественного анализа надежности элементов входящих в состав СУУ-400 рассмотрим таблицу 2, которая построена на основе статистических данных полученных в а/к “Волга-Днепр” за период с января 1993 года по сентябрь 2005 года. Статистические данные собраны по 10-ти самолетам Ан-124-100.

Таблица 2

№ п/п Отказавший блок Количество отказов Количество отказов, %
1 Вычислитель устойчивости ВУ-9 16 22,5
2 Вычислитель устойчивости ВУ-10 16 22,5
3 Блок демпфирующих гироскопов БДГ-25-6 8 11,3
4 Блок демпфирующих гироскопов №-25-9 7 10
5 Блок датчиков линейных ускорений БДЛУ2-3 4 5,4
6 Датчик аварийного управления ДАУ-1 8 11,3
7 Рулевой агрегат PA-81 12 17

Анализируя таблицу можно сделать вывод о том, что наибольшее количество отказов наблюдается у блоков ВУ-9 и ВУ-10 (по 16 отказов).


2.2 Количественный анализ надёжности

В данном пункте анализа надёжности будут рассмотрены вычислители устойчивости ВУ-9 и ВУ-10, так как в системе улучшения устойчивости они имели больше всего отказов.

Наработка до отказа вычислителей ВУ-9 и ВУ-10 образует ряд:

5397, 4066, 3637, 2600, 1062, 9574, 1727, 7295, 5720, 11490, 10957, 8765, 8156, 8575, 7845, 11158, 9120, 5760, 8259, 7071, 8183, 3160, 2121, 3675, 1891, 7497, 8719, 345, 5173, 8873, 8447, 8100.

Выстроим ряд по возрастанию для удобства восприятия и обработки информации:

345, 1062, 1727, 1891, 2121, 2600, 3160, 3637, 3675, 4066, 5173, 5397, 5720, 5760, 7071, 7295, 7497, 7845, 8100, 8156, 8183, 8259, 8447, 8575, 8719, 8765, 8873, 9120, 9574, 10957, 11158, 11490.

Для анализа надёжности определимся с планом наблюдения.

В нашем случае приемлем план наблюдения NUr;

N – число объектов поставленных на испытание;

U – план наблюдения для неремонтируемых объектов;

r – фиксированное число отказов.

Таким образом N=40, r=32

Определяем число интервалов разбиения:

k = 1+3.3∙lg r = 1+3.3∙lg32 = 5

Находим протяжённость интервала:

Произведём расчёт эмпирических характеристик, результаты расчёта сведём в таблицу 3:


Таблица 3

Nинт.

ti-1

ti

∆ti

∆ni

1 0 2300 2300 6 6,5217 6,5217 1
2 2300 4600 2300 7 7,6087 8,9514 0,85
3 4600 6900 2300 8 8,6957 12,882 0,675
4 6900 9200 2300 6 6,5217 13,73 0,475
5 9200 11500 2300 5 5,4348 16,722 0,325

На основании полученной таблицы строим графики

 

Вычислители ВУ-9 и ВУ-10 являются сложными объектами, состоящими из множества элементов, вероятность отказов которых достаточно мала. Следовательно, можно выдвинуть гипотезу, что отказы вычислителей подчиняются экспоненциальному закону распределения. Этому не противоречит и внешний вид гистограмм.

Определение параметров закона распределения.

Экспоненциальный закон распределения является однопараметрическим, т.е. для его полного определения необходимо найти один параметр — интенсивность отказов л.

Мы осуществили план наблюдения NUr, следовательно, параметр л можно вычислить с использованием метода максимума правдоподобия по формуле:

 1/ч


Отсюда среднее время наработки до отказа

 часов.

Проверка правильности принятой гипотезы.

Осуществляется с помощью критерия Пирсона ч2, рассчитанного по формуле:

Число разрядов при расчёте критерия на единицу больше числа разрядов разбиения вариационного ряда k, т.к. добавляется интервал от 0 до + ∞. Результаты расчёта представлены в таблице 4:

Таблица 4

Nинт.

ti-1час

tiчас

∆tiчас

∆niшт.

1 0 2300 2300 6 0,2504 10,017 -4,017 1,611
2 2300 4600 2300 7 0,1877 7,5084 -0,508 0,034
3 4600 6900 2300 8 0,1407 5,6281 2,3719 1
4 6900 9200 2300 6 0,1055 4,2187 1,7813 0,752
5 9200 11500 2300 5 0,0791 3,1623 1,8377 1,068
6 11500 8 0,2366 9,4656 -1,466 0,227

U2=

4,692

Величина  рассчитывается по формуле:


Число степеней свободы r в случае шести разрядов таблицы и одного параметра закона распределения в соответствии с формулой:

r=k-s-1=6-1-1=4, где s — число параметров закона распределения.

Задавшись уровнем значимости  в зависимости от  и числа степеней свободы r=4 находим критическое значение .

Подсчитанное значение U2=4,692 не попадает в критическую область (12;+∞), следовательно, принятая гипотеза об экспоненциальном законе распределения не противоречит статистическим данным.

Определение точности оценок параметров распределения.

Верхнюю и нижнюю границы доверительного интервала для параметра л вычисляем по формулам:

 ;

Для доверительной вероятности в=90% и r=32 найдём значения  и  , т.е. значения ч2, соответствующие доверительной вероятности  и  соответственно и числу степеней свободы 2r=2∙32=64

 ;

Подставив найденные значения, получим:


Таким образом, интервал (1,02∙10-4;1,99∙10-4) с доверительной вероятностью 90% покрывает истинное значение параметра л.

Построение графиков распределения.

Построение графиков распределения производим для диапазона 0<t<11500 часов.

Расчётные данные сведены в таблицу 5.

Таблица 5

t,

час

1150 2300 3450 4600 5750 6900 8050 9200 10350 11500

л(t)∙10-4

1/час

1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25

f(t)∙10-5

1/час

11 9,39 8,13 7,04 6,1 5,28 4,57 3,96 3,43 2,97

Рв(t)

0,7952 0,6324 0,5029 0,3999 0,3180 0,2529 0,2011 0,1599 0,1272 0,1011

Р(t)

0,8658 0,7496 0,6489 0,5617 0,4865 0,4212 0,3646 0,3157 0,2733 0,2366

Рн(t)

0,8889 0,7902 0,7024 0,6244 0,5551 0,4934 0,4386 0,3899 0,3466 0,3081

Расчёты велись в соответствии с формулами:

2.3 Выбор стратегии обслуживания

Блоки имеют следующие характеристики: интенсивность отказов л=1,25*10-4 1/ч и среднее время наработки до отказа Tср=7979 ч.

Для их обслуживания выберем стратегию Е, при которой в системе после самостоятельного проявления отказа проводится замена только отказавшего блока.

Стратегия Е имеет ряд особенностей:

1)  В системе не проводятся предупредительные восстановительные работы, поэтому задача ограничивается только получением численных показателей качества.

2)  Для получения показателей качества достаточно знать только средние характеристики, в частности, средние время безотказной работы блоков.

3)  Если появившийся в системе отказ проявляется мгновенно, то необходимо положить Tп=0.

4)  Если появившийся в системе отказ самостоятельно проявиться не может (Tп=∞), то такую систему эксплуатировать согласно стратегии Е нельзя, так как в этом случае kг=S*=0, C*=∞.

Таблица 6 – Характеристика системы

Блок Кол-во отказов

1 ВУ-9 16 7979 0,5 0 0,8 1,5
2 ВУ-10 16 7979 0,5 0 0,8 1,5

Данные для расчета приведены в таблице 6.

;

;

.


Получаем следующие величины показателей качества: коэффициент готовности kг=0,99995, средние удельные затраты C*=0,0001, средняя прибыль S*=1,9988.

Выбранная стратегия Е подходит для эксплуатации и обслуживания блоков ВУ-9 и ВУ-10 системы СУУ-400.


3. АНАЛИЗ ЭКСПЛУАТАЦИОННОЙ ТЕХНОЛОГИЧНОСТИ

Анализ эксплуатационной технологичности при проведении проверки комплекса с помощью встроенных средств контроля при оперативных формах ТО. Устранение неисправностей производится путем замены неисправных блоков и устройств, входящих в состав блоков. Для отыскания неисправностей используется ПРК-36 со жгутом и комбинированный прибор (тестер).

  3.1 ДОСТУПНОСТЬ РАБОТ

Расчет доступности работ производится по данным таблицы 7.

Таблица 7 – Эксплуатационная технологичность

п/п Содержание операций и технических требований Кол-во исполн., ч. Время выполнения, ч. Трудоём-кость выполнения работы, чел.*ч Коэф. изменения произво-дит. труда
1 Включите АЗС указанные в тех. карте 1 0,1 0,1 0,9
2 Проведите внешний осмотр системы СУУ-400 1 0,5 0,5 0,95
3 Подсоедините к контрольным разъемам ПРК-36 1 0,0833 0,0833 0,65
4 Проверьте работоспособность СУУ-400 по тех. карте 3 0,40 1,2 0,95
5 Если неисправен блок, то отрегулируйте его по тех. карте 3 0,50 1,5 0,5
6 Отключите ПРК-36 и установите заглушки на контрольные разъемы 1 0,0833 0,0833 0,65
7 Выключите АЗС 1 0,0833 0,0833 0,9

Основными операциями при проведении проверки системы являются № 4, 5. Дополнительные операции – № 1, 2, 3, 6, 7.

Суммарное время проведения основных операций:

 ч.

Суммарное время проведения дополнительных операций:

 ч.

Коэффициент доступности:

.

  3.2 УДОБСТВО РАБОТ

Расчет удобства работ проводится по данным таблицы 7. Полученный коэффициент удобства:

.

 
4. АНАЛИЗ СУЩЕСТВУЮЩЕЙ ТЕХНОЛОГИИ ПРОВЕРКИ СУУ-400

По существующему техпроцессу проверка системы производится по большей части вручную, с помощью пульта контроля ПРК-36, который представляет из себя вольтметр с набором галетных переключателей и потенциометров, с помощью которых набирают номер контакта и уровень измеряемого напряжения.

Существующая аппаратура позволяет проводить полный объем проверок СУУ-400 в соответствии с технологической документацией. Однако существующая КПА имеет ряд существенных недостатков:

1)  практически вся проверка осуществляется вручную и на оператора возложено выполнение большого количества операций, что требует от него высокой квалификации, постоянной внимательности и умственного напряжения, что в итоге способствует появлению ошибок;

2)  скорость и надёжность проверки, во многом зависит от «человеческого фактора»;

3)  обработка результатов так же полностью возложена на оператора и на существующем оборудовании нет возможности автоматизировать этот процесс;

4)  проверка правильности функционирования системы СУУ является довольно длительным и трудоёмким процессом – общее время необходимое для полной проверки СУУ-400 составляет 26 часов.

Из вышесказанного, становится очевидным необходимость автоматизации и повышения объективности контроля. Этого можно достичь с помощью введения устройства автоматического контроля системы СУУ-400, удовлетворяющего следующим требованиям:

1)  проведение полной всеобъемлющей проверки системы СУУ-400;

2)  максимальная автоматизация процесса проверки комплекса и обработки результатов;

3)  снижение влияние человеческого фактора на результат;

4)  снижение уровня энергозатрат;

5)  уменьшение времени проверки.


5. РАЗРАБОТКА СИСТЕМЫ АВТОМАТИЧЕСКОЙ ПРОВЕРКИ СУУ-400 5.1 ОБЩИЕ ТРЕБОВАНИЯ

Существующий технологический процесс технического обслуживания не дает возможности эксплуатировать систему СУУ-400 стратегии обслуживания по состоянию. Все изменения, происходящие в системе в процессе эксплуатации, не регистрируются, следовательно, нет возможности отследить и предугадать момент наступления отказа.

Такая технология контроля при современном уровне развития технических средств является неприемлемой, т.к. жёсткая конкуренция на рынке транспортных услуг требует сокращения времени технического обслуживания до минимума. Скорость и надёжность проверки, во многом зависит от «человеческого фактора». Поэтому проверка функционирования системы улучшения устойчивости самолёта является довольно длительным, трудоёмким процессом, что приводит к лишним затратам труда и электроэнергии, а следовательно ведет к увеличению материальных затрат.

Разработанная система устраняет существующие недостатки, позволяет перейти на стратегию обслуживания по состоянию, дает возможность производить сравнение разработанной модели системы с реальной системой.

Исходя из поставленной задачи, разрабатываемая система проверки должна обеспечивать:

1)  моделирование работы СУУ на ПК;

2)  подачу по командам с ПК тестовых сигналов в систему;

3)  получение результатов работы системы, их преобразование и последующая передача на ПК;

4)  сравнение результатов работы реальной системы с моделью;

5)  выдача информации о состоянии системы.


5.2 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ КПА

Структурная схема КПА представлена на рисунке 10.

В данную схему входят следующие блоки:

1)  ПК – персональный компьютер;

2)  DT9842/8 – блок контроля и управления;

3)  ВУ-9, ВУ-10 – вычислители демпферов рысканья и тангажа;

4)  РА-81 РВ – рулевой агрегат руля высоты;

5)  РА-81 РН – рулевой агрегат руля направления;

6)  РП-72 – рулевой привод;

7)  РВ – руль высоты;

8)  РН – руль направления.

В ПК происходит проверка исправности и работоспособности СУУ путем сравнения результатов работы реальной системы СУУ и ее модели.

Построение математической модели СУУ происходит в ПК. Модель реализует следующие законы управления:

,

Входными величинами являются текущие значения угловых скоростей , , , а также значения вертикальной перегрузки nу , которые также формируются в рамках модели. Выходной величиной является угол отклонения руля высоты и руля направления .

При проведении проверки СУУ вместо датчиков, установленных на самолете, подключается разрабатываемая КПА.

ПК через DT9482/8 формирует и направляет в ВУ-9 и ВУ-10 сигналы угловой скорости , ,  и нормальной перегрузки ny имитируя отклонение БДГ.

DT9482/8 предназначен для подключения ПК к системе СУУ. Т.к. СУУ оперирует аналоговыми величинами, а ПК цифровыми, DT9482/8 производит управление работой ВУ-9 и ВУ-10 и сбором данных о работе системы СУУ в аналоговой форме по командам с ПК. Обмен данными между DT9482/8 и ПК происходит по цифровому интерфейсу.

В ВУ-9 и ВУ-10 происходит реализация закона управления, рассмотренного выше, в результате чего формируются управляющие сигналы , .

РА-81 РВ преобразует электрический сигнал  в механическое перемещение траверсы руля высоты . Аналогично происходит и с рулем направления.

Датчик обратной связи (ДОС), установленный на РА-81, преобразует механическое перемещение в электрический сигнал . Т.к. ДОС жестко связан с выходной траверсой рулей высоты и направления, соответствующий сигнал  будет пропорционален углу отклонения руля высоты и руля направления.

Сигнал  преобразованный в УДУ посредством DT9482/8 поступает в ПК.

В ПК полученный сигнал отслеживается на достоверность путем сравнения с сигналом, полученным в процессе моделирования системы.

По окончанию проверки ПК выдаёт информацию о пригодности системы к эксплуатации.



Информация о работе «Разработка технологии обслуживания системы улучшения устойчивости и управляемости АН-124-100»
Раздел: Промышленность, производство
Количество знаков с пробелами: 98334
Количество таблиц: 16
Количество изображений: 2

Похожие работы

Скачать
146463
19
10

... с положительностью сальдо поступлений и расходов и малым сроком окупаемости. 6. Обеспечение безопасности жизнедеятельности в системе ДО В данном дипломном проекте разработана автоматизированная информационная система дистанционного обучения по дисциплине “Финансы и кредит”. Ее использование тесно связано с применением ПЭВМ, поэтому организация рабочего места пользователя системы должна ...

Скачать
309960
39
17

... подведомственной территории определяет особый интерес к нему со стороны органов местного самоуправления. На передний план выходят вопросы рационального управления развитием и состоянием рынка бытовых услуг на муниципальном уровне. Исследования, проведенные в работе, определили способы экономического регулирования рынка, которые целесообразно использовать на уровне муниципального управления. В ...

Скачать
568458
20
78

... для реализации системы бюджетирования Консультационной группы "Воронов и Максимов". Статья о проблемах выбора системы бюджетирования - в проекте "УПРАВЛЕНИЕ 3000". Бюджетный автомат Если вы решитесь на автоматизацию системы бюджетирования компании, перед вами сразу встанут вопросы: что выбрать, сколько платить, как внедрять. Примеряйте! О ЧЕМ РЕЧЬ В “Капитале” на стр. 44, 45 мы рассказали ...

Скачать
161549
25
0

... кадрового состава организации стоящим перед ней целям – задачи службы персонала. Анализируя ситуацию, можно сделать следующие выводы по поводу работа отдела по управлению персоналом. Естественно, что в УФПС Смоленской области филиала ФГУП «Почта России» никто не занимается прогнозом кадровых потребностей, не проводится оценка труда и персонала. Отсутствует диагностика кадровой ситуации в целом. ...

0 комментариев


Наверх