5.3 РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ КПА

 

5.3.1 Описание

Функциональная схема КПА представлена на рисунке 11.

Данная система позволяет осуществлять автоматическую выдачу и отслеживание сигналов с ВУ-9 и ВУ-10. Вся обработка данных осуществляется в персональном компьютере. Предложенная функциональная схема обеспечивает оперативность и удобство проверки. Данная схема позволяет расширять технические возможности системы проверки за счёт включения в состав различных модулей и приборов.

В КПА входят следующие блоки:

1)  ПК – персональный компьютер;

2)  DT9842/8 – блок контроля и управления;

3)  ВУ-9, ВУ-10 – вычислители демпферов рысканья и тангажа;

4)  РА-81 РВ – рулевой агрегат руля высоты;

5)  РА-81 РН – рулевой агрегат руля направления;

6)  РП-72 – рулевой привод;

7)  РВ – руль высоты;

8)  РН – руль направления.

ПК предназначен для расчета математической модели СУУ, формирования управляющих сигналов и обработки результатов измерения.

DAQ DT9842/8 обеспечивает взаимодействие ПК с системой СУУ путем аналого-цифровых и цифро-аналоговых преобразований сигналов. Благодаря наличию встроенного микроконтроллера (МК), DAQ существенно разгружает ПК.

 

5.3.2 Выбор элементной базы

Головным устройством функциональной схемы является персональный компьютер (ПК) с предустановленной программой LabVIEW, который формирует управляющие сигналы, а также сохраняет в памяти получаемую информацию для последующей обработки.

Для обеспечения мобильности в качестве ПК в системе проверки используется ноутбук. Требования, которым должен удовлетворять ПК, приведены в таблице 8.

Таблица 8 – Рекомендуемые требования к ПК

Параметр Характеристики
ЦПУ

Intel Pentium-M 1800 MHz или выше

AMD Athlon XP-M 2000+ или выше

ОЗУ 256 Mb или больше
Емкость жесткого диска 40 Gb или больше
ОС Windows XP/2000/ME
Интерфейс USB v2.0
Время автономной работы >3 ч.

DAQ DT9842/8 (рисунок 12) – прибор для сбора данных и управления, является устройством производства компании Data Translations, работающий совместно с программным обеспечением LabVIEW.

Устройство имеет 8 аналоговых выходов с диапазоном ±10В; 8 аналоговых входов с диапазоном ±20В; 24-разрядный цифровой порт ввода/вывода (TTL/LVTTL/CMOS). Обладает компактными размерами, поддерживает операционные системы Windows 2000/XP/ME, Mac OS X, Linux.

Функционально DAQ состоит из микроконтроллера (Logic), буфера обмена, оперативного запоминающего устройства (ОЗУ), цифро-аналогового преобразователя (DAC), аналого-цифрового преобразователя (ADC), контроллера шины USB, внутренней шины обмена данными, терминалов ввода/вывода.

DAQ выбран исходя из требований системы проверки. Он обеспечивает формирование восьми аналоговых сигналов по сигналам с ПК. Это является достаточным для проверки работоспособности СУУ-400. Отработанный СУУ сигнал поступает через ПС обратно в DAQ, где оцифровывается и по интерфейсу USB передается на ПК. Свободные аналоговые порты ввода можно использовать для контроля других параметров системы СУУ.

Блок схема устройства представлена на рисунке 13.

Характеристики устройства представлены в таблице 9.

Назначение контактов в портах устройства приведены в таблицах 10, 11.

Таблица 9 – Характеристики DAQ DT9842/8

 

Параметр Значение

 

Аналоговый выход Количество 8 недифференциальных

 

Разрешающая способность 16 бит

 

Частота обновления 200 кГц

 

Напряжения недифференциальные: ±10В

 

Максимальная погрешность 36,4 мВ

 

Напряжение при включении 0 В

 

Выходное сопротивление 0,3 Щ
Параметр Значение

 

Аналоговый вход Количество 8 недифференциальных

 

 

Разрешающая способность 16 бит

 

 

Частота дискретизации 100 КГц

 

 

Напряжения

дифференциальные: ±25В, ±10В, ±5В, 4В, ±2.5В, ±2В, ±1.25В, ±1В

недифференциальные: 10В

 

 

Погрешность нуля ±1 мВ

 

 

Максимальная погрешность 0,01%

 

 

Частота обновления 24 МГц (41,67 нс)

 

 

Входное сопротивление 100 МЩ

 

Цифровой ввод/вывод Количество

порт 0 – 8/8 линий

порт 1 – 8/8 линий

порт 2 – 8/8 линий

 

 

Совместимость TTL, LVTTL, CMOS

 

 

Программирование портов индивидуально каждый выход

 

 

Уровень 0

Уровень 1

0-0,8 В

2,4-5 В

 

Внешнее питание до 5 В 5А максимум

 

Интерфейс Стандарт USB v2.0 Full Speed

 

 

Скорость 12 Мб/с

 

 

Питание до 5 В 500 мА максимум

 

Размеры В Bох исполнении 229x247x114 см

 

 

В Board исполнении 233x220 см

 

Рабочая температура

0-45 оС

 

Влажность воздуха 95 %

 

Максимальная высота 3000 м

 

Таблица 10 – Назначение контактов аналоговых портов вывода, цифровых портов ввода/вывода и счетчиков-таймеров

Контакт Назначение контакта Контакт Назначение контакта
34 Analog Output 00 68 Analog Output 00 Return
33 Analog Output 01 67 Analog Output 01 Return
32 Analog Output 02 66 Analog Output 02 Return
31 Analog Output 03 65 Analog Output 03 Return
30 Analog Output 04 64 Analog Output 04 Return
29 Analog Output 05 63 Analog Output 05 Return
28 Analog Output 06 62 Analog Output 06 Return
27 Analog Output 07 61 Analog Output 07 Return
26 External D/A Trigger 60 Isolated Digital Ground
25 External D/A Clock 59 Isolated Digital Ground
24 External A/D Trigger 58 Isolated Digital Ground
23 External A/D Clock 57 Isolated Digital Ground
22 Digital Input Trigger 56 Isolated Digital Ground
21 Digital Input Clock 55 Isolated Digital Ground
20 Digital Output Trigger 54 Isolated Digital Ground
19 Digital Output Clock 53 Isolated Digital Ground
18 Digital Input/Output 3, Port 0 52 Digital Input/Output 7, Port 0
17 Digital Input/Output 2, Port 0 51 Digital Input/Output 6, Port 0
16 Digital Input/Output 1, Port 0 50 Digital Input/Output 5, Port 0
15 Digital Input/Output 0, Port 0 49 Digital Input/Output 4, Port 0
14 Digital Input/Output 3, Port 1 48 Digital Input/Output 7, Port 1
13 Digital Input/Output 2, Port 1 47 Digital Input/Output 6, Port 1
12 Digital Input/Output 1, Port 1 46 Digital Input/Output 5, Port 1
11 Digital Input/Output 0, Port 1 45 Digital Input/Output 4, Port 1
10 Digital Input/Output 3, Port 2/ TINP1b 44 Digital Input/Output 7, Port 2
9 Digital Input/Output 2, Port 2/ Encoder 2 Clr 43 Digital Input/Output 6, Port 2
8 Digital Input/Output 1, Port 2/ Encoder 1 Clr 42 Digital Input/Output 5, Port 2
7 Digital Input/Output 0, Port 2/ Encoder 0 Clr 41 Digital Input/Output 4, Port 2
6 User Clock Input 0/ Encoder A0 40 Isolated Digital Ground
5 User Counter Output 0 39 External Gate 0/ Encoder B0
4 User Clock Input 1/ Encoder A1 38 Isolated Digital Ground
3 User Counter Output 1 37 External Gate 1/ Encoder B1
2 User Clock Input 2/ Encoder A2 36 Isolated Digital Ground
1 User Counter Output 2 35 External Gate 2/ Encoder B2

Таблица 11 – Назначение контактов в порту аналогового входа

Контакт Назначение контакта Контакт Назначение контакта
34 Analog Input 00 68

Analog Input 00 Returna

33 Analog Input 01 67

Analog Input 01 Returna

32 Analog Input 02 66

Analog Input 02 Returna

31 Analog Input 03 65

Analog Input 03 Returna

30 Analog Input 04 64

Analog Input 04 Returna

29 Analog Input 05 63

Analog Input 05 Returna

28 Analog Input 06 62

Analog Input 06 Returna

27 Analog Input 07 61

Analog Input 07 Returna

26 Reserved 60 Reserved
25 Reserved 59 Reserved
2 Amp Low 36 Analog Common
1 +5 V Isolated Output 35 Isolated Power Ground

Устройство DAQ DT9842/8 отвечает следующим стандартам по безопасности:

1)  Электробезопасность: IEC 61010-1; EN 61010-1; UL 61010-1; CAN/CSA-C22.2 No. 61010-1.

2)  Электромагнитная совместимость:

·  Emissions – EN 55011 Class A at 10 m FCC Part 15A above 1 GHz;

·  Immunity – Industrial levels per EN 61326:1997 + A2:2001, Table 1;

·  EMC/EMI – CE, C-Tick, and FCC Part 15 (Class A) Compliant.

3)  Соответствие требованиям директив стран Совета Европы CE:

·  Low-Voltage Directive (safety) – 73/23/EEC;

·  Electromagnetic Compatibility Directive (EMC) – 89/336/EEC.

Устройства демодуляции и усиления УДУ являются субблоками вычислителей ВУ-9 и ВУ-10. В системе контроля они служат для преобразования сигналов, идущих из ДОС в DAQ. Использование данных элементов позволяет существенно сократить расходы на разработку нового преобразователя.

5.1.1 Работа КПА 5.1.1.1Формирование управляющих сигналов

Цепь: ВУ-9 – УДУ – РА-81 РВ – РВ

ПК – DAQ – <

ВУ-10 – УДУ – РА-81 РВ – РН

В ПК происходит моделирование движения центра масс воздушного судна (ВС), для измерения движения которого на ВС используется ряд датчиков и систем. Для измерения угловой скорости по крену, рысканию и тангажу применяется БДГ.

Полученные значения угловых скоростей , , и значения перегрузки ny в виде цифровых кодов напряжений передаются по интерфейсу USB в DAQ DT9842/8.

В DAQ происходит преобразование цифрового кода в аналоговое напряжение. Выбор номера выходного контакта осуществляется программным способом из среды LabVIEW через драйвер устройства.

УДУ приводит сигналы, поступающие от DAQ, в требуемую форму. При этом сигналы , , ,ny соответствуют по форме и напряжению сигналам с БДГ-25 и БДЛУ. В таком виде сигналы поступают в ВУ-9 и ВУ-10, от которых, на время проведения проверки, отключаются собственные датчики БДГ-25 и БДЛУ, установленные на ВС.

Выходные сигналы , сформированные ВУ-9 и ВУ-10 подаются на входы РА-81 РВ и РА-81 РН. Они формируют сигналы  и  в виде механического перемещения траверс РВ и РН для отклонения соответствующих рулей пропорционально сигналам с ВУ-9 и ВУ-10. ДОСы, жестко соединенные с выходными траверсами РА-81 РВ и РА-81 РН, вырабатывают сигналы  пропорциональные углу отклонения РВ и РН. Эти сигналы поступают в ВУ-9 и ВУ-10 для обеспечения отрицательной обратной связи (ООС). Так реализуется закон управления боковым каналом САУ.

5.1.1.2Прием результирующих сигналов

Цепь: ДОС РВ – УДУ

>DAQ – ПК.

ДОС РН – УДУ

Сигналы , снимаемые с ДОСов, поступают в ПК для контроля, предварительно пройдя через DT9842/8.

УДУ выпрямляет сигналы с ДОСов и направляет их в DAQ.

DAQ DT9842/8 преобразует аналоговое напряжение в цифровой код. Выбор номера входного контакта осуществляется программным способом из среды LabVIEW через драйвер устройства. Далее DAQ по интерфейсу USB передает оцифрованные сигналы  в ПК.

В ПК происходит сравнение сигналов , соответствующих углу отклонения рулей высоты и направления по командам реальной СУУ, и сигналов  и , полученных в результате математического моделирования работы СУУ. По завершению проверки выдается отчет о состоянии системы.

Предложенная схема обработки входных и выходных сигналов позволяет отслеживать и фиксировать в ПК их значения, а так же выдавать информацию об исправности и неисправности СУУ.

5.2 МОДЕЛИРОВАНИЕ СИСТЕМЫ СУУ-400 И КОНТРОЛЬ ПАРАМЕТРОВ В СРЕДЕ LabVEIW 5.2.1 Сведения о программном обеспечения LabVEIW

Моделирование системы осуществлялось при помощи специализированной измерительной интегрированной программной оболочки для сбора, обработки и визуального представления измерительной информации – LabVIEW фирмы National Instruments.

LabVIEW - прикладная программа разработки пользовательских приложений, очень схожая с языками C или БЕЙСИК. Однако LabVIEW отличается от этих прикладных программ в одном важном отношении. Другие системы программирования используют текстово-ориентированные языки, для создания строк исходного кода программ, в то время как LabVIEW использует графический язык программирования, под кодовым названием "G", для создания программ в форме блок-схемы.

LabVIEW, подобно C или БЕЙСИКУ, является универсальной системой программирования с мощными библиотеками функций для различных задач программирования. LabVIEW включает в себя библиотеки инструментов для:

·  сбора данных,

·  обмен данными с устройства по GPIB (Многофункциональный Интерфейс фирмы HP) ,

·  обмен данными с устройства по стандарту RS-232,

·  анализа данных,

·  представления данных,

·  хранения обработанных данных на носителях различного типа.

LabVIEW также включает стандартные средства автоматического проектирования приложений, такие, что возможно устанавливать контрольные точки, представлять в виде стендовой модели выполнение программы, так, чтобы видеть, как данные проходят через программу шаг за шагом, чтобы упростить понимание происходящих процессов.

LabVIEW - универсальная система программирования, но также включает библиотеки функций и средства проектирования, разработанные определенно для сбора данных и инструменты управления и обработки данных. Программы разработанные в среде LabVIEW названы виртуальными приборами (ВП), потому что их действия и внешний вид могут имитировать реальные приборы. В тоже время, ВП подобны функциям стандартных языков программирования. Однако ВП имеют ряд преимуществ перед функциям стандартных языков программирования:

·   ВП более наглядны,

·  Просты для конструирования измерительных модулей и взаимодействия с оператором,

·  Внутренняя структура ВП является для пользователя “чёрным ящиком” с известными входами и выходами, что упрощает применение ВП и обеспечивает автоматическую совместимость различных ВП. Однако в этом можно обнаружить существенный недостаток. Из-за того, что неизвестна внутренняя структура ВП, то не известны и погрешности, возникающие внутри ВП. Соответственно, в случае если погрешности не документированы их приходится принимать равными нулю.

5.2.2 Передняя панель системы контроля параметров СУУ-400

Передняя панель системы контроля параметров СУУ-400 представляет собой совокупность средств управления и индикаторов. Внешний вид передней панели представлен на рисунке 14.

В состав передней панели входят следующие элементы:

·  Ручки управления (необходимы для задания значений эмулируемых сигналов угловой скорости щx, щу, щz и ny);

·  Тумблер «Закрылки» - необходим для переключения режима проверки из положения «=0» (соответствует углу положения закрылков =0º) в положение «>5» (соответствует углу положения закрылков >5º);

·  Тумблер «Контроль – Имитация» - переключает режим работы системы контроля параметров из режима контролирования параметров в режим имитации работы системы (т.е. режим работы модели системы СУУ-400);

·  Индикаторная панель «ДОС 1» - отображает реакцию системы СУУ-400, в частности реакцию демпфера рысканья на стимулирующие сигналы;

·  Индикаторная панель «ДОС 2» - отображает реакцию демпфера тангажа на стимулирующие сигналы;

·  Лампа сигнальная «Исправность СУУ» - сигнализирует в процессе работы программы об исправности система СУУ (зеленый цвет), при проявлении отказа лампа изменяет цвет на красный;

·  Кнопка «Тест» - запускает работу программы.

·  Кнопка «Стоп» останавливает работу программы.

Передняя панель достаточно информативна и отображает основные параметры необходимые для проверки системы.

5.2.3 Блок схема

Блок схему системы контроля параметров, которая является графическим исходным текстом ВП в среде LabVIEW. Блок схема создается путем объединения вместе объектов, которые осуществляют вывод и ввод данных, выполняют необходимые функции по преобразованию значений, и управляют процессом выполнения задачи.

На рисунке 15 представлена блок схема системы контроля параметров.

Блок схема позволяет сформировать эмулирующие сигналы эквивалентные сигналам угловых скоростей и нормального ускорения с блоков БДГ и БДЛУ. Эти сигналы подаются на DT9842/8, а также на модель системы СУУ.

Модель системы СУУ построена на основании законов управления рулем высоты и направления:

,

.

Согласно этим законам модель СУУ-400 формирует сигналы, которые могут быть поданы на рулевые агрегаты РА-81. Этот же сигнал отображается на индикаторе передней панели для последующего сравнения. Также на индикаторе отображается сигнал обратной связи поступивший из РА-81 после отработки сигнала, что позволяет сравнить параметры идеального и реального сигнала и выдать соответствующее заключение о состоянии системы СУУ-400. Все сигналы, формируемые и получаемые извне, регистрируются в файле и хранятся в памяти компьютера.

5.3 АЛГОРИТМ ПРОВЕРКИ

Проверку СУУ следует проводить по следующему алгоритму:

1) Соединить жгуты согласно схеме электрических соединений КПА (ДП.2006.363.014.Э2).

2) Включить питание ПК и DT9842/8.

3) Включить АЗС питания СУУ.

4) Запустить программу LabVIEW, в ней запустить процесс проверки СУУ.

5) В процессе работы программы ПК посылает и принимает контрольные сигналы в систему, одновременно записывая на диск все промежуточные результаты.

6) По окончанию проверки программа выдает на экран информацию об исправности или неисправности СУУ.

7) Закрыть программу LabVIEW.

8) Выключить АЗС питания СУУ.

9) Сохранить результаты работы программы проверки на внешний носитель информации, чтобы предоставить его инженеру по АиРЭО для принятия решения о пригодности системы к эксплуатации.

10)  Выключить питание ПК и DT9842/8.

11)  Отсоединить жгуты.

 
6. ПАТЕНТНЫЕ ИССЛЕДОВАНИЯ

Патентная информация является наиболее оперативным видом научно-технической информации и позволяет судить о существующем уровне и тенденциях развития современной науки и техники.

В большинстве стран мира применяются глубоко дифференцируемые системы патентной классификации. Из наиболее распространенных принципов построение патентной классификации можно выделить функциональный и отраслевой. В настоящее время все страны перешли на международную классификацию изобретений (МКИ). МКИ построена на функционально отраслевом принципе и представляет собой систему, в которой все объекты изобретений сгруппированы в восьми больших разделах. Полный классификационный индекс МКИ состоит из комбинаций индексов обозначающих раздел, класс, подкласс, основную группу и подгруппу. МКИ постоянно совершенствуется на основе развития техники.

Патентные исследования включают такие виды работ как:

1)  составление задания на проведение патентных исследований;

2)  разработка регламентного поиска;

3)  поиск и отбор патентной документации;

4)  подготовка выводов и документации;

5)  составление отчета.

Патентные исследования проводятся на тему: Системы и приборы контроля систем автоматического управления самолётом.

Глубина поиска 13 лет, по отечественным фондам. В данном дипломном проекте проектируется система автоматической проверки бокового канала СУУ-400 самолёта Ан-124-100. Результат поиска представлен в таблице 12.


Таблица 12 – Патентная документация

Предмет поиска (объект, его составные части) Страна выдачи, вид и номер охранного документа, классификационный индекс Заявитель с указанием страны, номер заявки, даты приоритета и публикации Сущность заявленного технического решения и цели его создания
Способ сигнализации о расположении прибора контроля относительно контролируемого объекта и устройство для его осуществления

Россия

Пат. №2064195

МПК 6 G05D3/00

Научно-производственное объединение «Научно-исследовательский конструкторский институт монтажной технологии», Романов О.Н.

№4948311/09

20.07.96

Группа изобретений относится к области автоматики и может быть использована в устройствах для технологического контроля и обработки изделий, поскольку обеспечивает оптимальное расположение инструмента относительно изделия. Цель группы изобретений повышение качества и достоверности установки прибора контроля, расширение функциональных возможностей.
Система контроля посадки летательных аппаратов.

Россия

Пат. №2092887

МПК 6 G05D1/10

Багдалова Н.А.

№94018425/11

19.05.94

Контроль посадки ЛА.
Устройство для контроля датчиков системы автоматического управления самолетом

Россия

Пат. №2042170

МПК 6 G05B23/02

Санкт-Петербургская государственная академия аэрокосмического приборостроения,

Изобретение относится к комплексному контролю исправности датчиков системы автоматического управления (САУ) самолета. Наибольшее значение оно имеет для полетного контроля датчика скорости, датчика

Предмет поиска (объект, его составные части) Страна выдачи, вид и номер охранного документа, классификационный индекс Заявитель с указанием страны, номер заявки, даты приоритета и публикации Сущность заявленного технического решения и цели его создания

Чернов В.Ю.

Чернов С.Ю.

№94043315/09

10.11.96

угла атаки, датчиков угловых скоростей и датчиков перегрузок по осям связанной системы координат. Устройство обладает высокой достоверностью обнаружения отказа этих датчиков без избыточного приборного оборудования на борту самолета.
Устройство для контроля построителя вертикали и датчиков угловых скоростей

Россия

Пат. №2106006

МПК 6 G05B23/02

Санкт-Петербургская государственная академия аэрокосмического приборостроения,

Чернов В.Ю.

27.02.98

Использование относится к комплексному контролю датчиков пилотажной информации летательных аппаратов, в том числе построителю вертикали (авиагоризонта, гировертикали) и датчикам угловых скоростей по осям связанной системы координат. Технический результат заключается в повышении эффективности обнаружения отказов построителя вертикали и датчиков угловых скоростей, который достигается за счет определения проекций абсолютной скорости единичного вектора,
ориентированного по вертикали, через его проекции скорости в связанной системе координат.
Система управления и контроля автоматизированного комплекса

Россия

Пат. №2106678

МПК G05B23/02

Конструкторское бюро приборостроения,

Подчуфаров Ю.Б.

№ 93021206/09

23.04.93

10.03.98, Б-7

Изобретение относится к области управления и регулирования и, в частности к области контроля и управления автоматизированными комплексами с использованием электрических сигналов. Технический результат заключается в повышении эффективности работы автоматизированного комплекса.
Автоматизированная система контроля

Россия

Пат. №2150730

МПК G05B23/02

Рязанское конструкторское бюро "Глобус",

Пономарев Н.Н.

№ 99103988/09

24.02.99

Изобретение относится к контрольно-измерительной технике и

может быть использовано при создании автоматизированных систем контроля различных объектов. Техническим результатом является расширение функциональных возможностей автоматизированной системы контроля за счет возможности использования этой системы для контроля различных объектов.

Система для обработки и вывода информации

Россия

Пат. №2079869

МПК G05B23/02

Акционерное общество "Модульные технологические конструкции", Романовский В.Г.

№ 94003295/09

27.01.94

20.05.97, Б-14

Изобретение относится к автоматике и может быть использовано для централизованного контроля, обработки и регистрации параметров многофункциональных объектов управления. Техническим результатом от использования изобретения является расширение области применения системы с повышением надежности и достоверности результатов контроля параметров множеством разнородных датчиков.

В результате патентных исследований можно сделать заключение, что нет таких систем и приборов контроля систем автоматического управления самолётом чтобы они были близки к проектируемой установке по принципу действия.

 
7. Экология и безопасность жизнедеятельности

 

7.1 Введение. Требования к безопасности обслуживания самолета АН-124-100

 

Безопасность жизнедеятельности, как система включает в себя: экологическую безопасность, производственную безопасность, экономическую безопасность, правовые основы, гражданскую оборону, чрезвычайные ситуации и ликвидацию их последствий.

Правовую основу обеспечения безопасности жизнедеятельности составляют соответствующие законы и постановления, принятые представительными органами РФ (до 1992 г. РСФСР) и входящих в нее республик, а также подзаконные акты: указы президентов, постановления, принимаемые правительствами РФ и входящих в нее государственных образований, местными органами власти и специально уполномоченными на то органами.

С точки зрения опасности поражения высокими токами и напряжениями самолет можно разделить на ряд блоков: 1) электроснабжение; 2) силовая установка; 3) топливная система; 4) система управления; 5) система кондиционирования воздуха; 6) противообледенительная система; 7) противопожарная система; 8) освещение и световая сигнализация; 9) пилотажно-навигационное оборудование; 10) радиотехническое оборудование; 11) связное оборудование; 12) бортовые средства контроля и регистрации полетных данных.

Рассмотрим каждый из этих блоков. В таблице 13 указаны основные напряжения действующие в блоках электроснабжение, силовая установка, топливная система, система управления.


Таблица 13.

Название блока Электроснабжение Силовая установка (СУ) Топливная система Система управления
Номер блока 1 2 3 4
Действующие напряжения

~200/115В 400Гц

=27В

200/115В 400Гц

=27В

~115В 400Гц,

=27В

~115В 400Гц,
~36В 400Гц
=27В

 

Система электроснабжения. Система электроснабжения (СЭС) представляет собой очень сложную систему с большим количеством элементов и разветвленной структурой затрагивающей все части самолета.

К системе электроснабжения относятся генераторы, преобразователи, трансформаторы, распределительные устройства, жгуты проводов.

Генератор вырабатывает напряжение 200В трехфазное переменного тога частотой 400Гц. Такое напряжение представляет опасность для жизни человека. Поэтому при обслуживании генератора строго запрещается касаться его руками. Однако во избежание поражения током предусмотрены ряд средств. Все жгуты проводов должны иметь неповрежденную изоляцию, резиновые колпачки коллекторов должны закрывать контакты, все металлические части агрегатов должны иметь заземление, т.е. они все должны иметь металлические проводники, соединенные с массой.

Преобразователи также вырабатывают высокие напряжения и токи, в частности 115В 400Гц однофазного переменного тока. К преобразователям относится все выше сказанное относительно генераторов.

Трансформаторы вырабатывают напряжение 36В 400Гц трехфазного переменного тока для питания различных гироскопических приборов. Это напряжение также представляет опасность для здоровья человека. Поэтому все трансформаторы закрыты кожухами, открывать которые во время их работы строго запрещается. Трансформаторы подсоединяются в соответствующих местах с помощью разъемов, конструкция и расположение которых гарантирует недопущение несчастных случаев от случайного поражения током.

При демонтаже блоков и агрегатов СЭС во избежание коротких замыканий на штепсельные разъемы необходимо устанавливать технологические заглушки, а свободные концы электропроводов следует изолировать специальными резиновыми наконечниками.

Силовая установка. В состав силовой установки входят: 4 двигателя Д-18Т, топливная система двигателя, масляная система, система управления двигателями, система запуска двигателей, система контроля и диагностики двигателей.

В топливной системе двигателя используются насосы, электрокраны, датчики расхода питающиеся напряжением 115В 400Гц. Провода питания насосов надежно защищены изоляцией, корпуса заземлены. Пульт контроля топливной системы запитан напряжением 27В. От перенапряжения система защищена автоматом защиты сети (АЗС). Относительно топливной и масляной систем самолета все выше сказанное верно.

В состав системы управления двигателями самолета входят автоматическая система управления двигателями, система останова двигателей. Питание систем происходит переменным 115В 400Гц и постоянным напряжением 27В. Системы подключены к общему АЗС.

Система запуска двигателей состоит из воздушного стартер-генератора, системы зажигания. Система зажигания питается напряжением от сети 200/115В 400Гц. Для работы свечей зажигания напряжение преобразуется до необходимой величины (до 20кВ). Для защиты от пробоя коллекторы системы зажигания защищены толстой изоляцией. Система зажигания имеет собственные АЗС.

Система контроля и диагностики двигателя является автоматической системой, питание происходит от сети 115В 400 Гц, система оборудована системой защиты от перенапряжения.

Система управления. Система управления состоит из электрогидромеханических систем, которые обеспечивают управление самолетом. Питание систем происходит от сети 115В 400Гц, 36В 400Гц и 27В. Основные блоки находятся в техотсеке в специальных заземленных стеллажах закрытых кожухами. Все системы имеют независимые АЗС.

Электроприводы системы управления питаются напряжением 115В 400Гц и поэтому могут представлять опасность для человека. Во избежание поражения током контакты электроприводов заизолированы, сами электроприводы защищены специальными кожухами.

В таблице 14 указаны основные напряжения действующие в блоках система кондиционирование воздуха, противообледенительная система, противопожарная система, освещение и световая сигнализация.

Таблица 14.

Название блока Система кондиционирования воздуха Противообле-денительная система

Противопо-жарная

система

Освещение и световая сигнализация
Номер блока 5 6 7 8
Действующие напряжения =27 В

~200/115В

400Гц

=27В

~115В 400Гц

=27В


Система кондиционирования воздуха. В состав входит собственно система кондиционирования воздух и система автоматического регулирования давления. Питание пульта, датчиков, электрокранов и заслонок осуществляется от сети 27В. Система имеет независимый АЗС.

Противообледенительная система питается напряжением 200/115В 400Гц, поэтому некоторые блоки могут представлять опасность для здоровья человека. Контакты обогревательных элементов, к которым подводится питание, должны быть заизолированы. Датчики системы должны быть заземлены и во избежание замыкания в силу специфики работы все контакты изолируются специальным изолятором. Система защищена АЗС.

Система пожаротушения. Для обнаружения перегрева и пожара в отсеках двигателей, ВСУ (вторичная силовая установка) и багажно-грузовых отсеках установлена аппаратура системы сигнализации о перегреве и пожаре самолета, обеспечивающая выдачу световой, звуковой и цифро-буквенной информации о пожаре.

Аппаратура автоматически включает огнетушители первой очереди пожаротушения только в отсеки СУ и ВСУ.

Питание датчиков, электрокранов, пульта управления и сигнализации происходит от сети 27В. В составе есть система защиты от перенапряжения.

В системе освещения и световой сигнализации распределительные коробки защищены кожухами, провода проложены под декоративными панелями в определенных местах (не допускается свободное провисание проводов и их беспорядочное положение), патроны с лампочками закрыты пластиковыми светофильтрами.

Система освещения разделена на два канала и получают питание от бортсети переменного тока напряжением 115В. При выходе из строя одного канала питания лампы должны обеспечивать достаточную яркость. При отказе обоих источников тока напряжением 115В, питание аварийных приборов и щитков переключается к шине двойного питания напряжением 27 В.

Светильники заливающего освещения получают питание от двух каналов постоянного тока напряжением 27В и используются как аварийное освещение.

В таблице 15 указаны основные напряжения действующие в блоках пилотажно-навигационное оборудование, радиотехническое оборудование, связное оборудование, бортовые средства контроля и регистрации полетных данных.


Таблица 15.

Название блока Пилотажно-навигационное оборудование Радиотехническое оборудование Связное оборудование Бортовые средства контроля и регистрации полетных данных
Номер блока 9 10 11 12
Действующие напряжения

~200/115В 400Гц

~36В 400Гц

=27В

~115В 400Гц =27В

~200/115В 400Гц

=27В

Пилотажно-навигационное оборудование. В составе ПНО находится множество систем, которые питаются высоким напряжением (115В 400Гц, 36В 400Гц). Системы автоматического контроля питаются напряжением 27В.

Конструкция блоков, мест их размещения обеспечивают высокую электробезопасность. Блоки размещаются в техотсеке в специальных стеллажах с разъемами особой конструкции (врубные разъемы). Конструкция стеллажей и разъемов обеспечивает необходимую изоляцию и металлизацию, и необходимое заземление.

К системам связи относятся радиостанции различных диапазонов, системы внутренней связи, система сигнализации опасности (ССО), радиомаяки и др.

Системы связи питаются напряжением 27В постоянного тока. При некоторых обстоятельствах это напряжение может представлять опасность для здоровья человека. Поэтому все агрегаты закрыты специальными защитными крышками, провода проложены под специальными панелями, все разъемы и штекеры хорошо заизолированы, все блоки заземлены.

При выполнении работ по обслуживанию систем связи все приборы с которыми не проводятся работы следует обесточить и закрыть защитными крышками, разъемы должны быть закрыты технологическими заглушками оголенные контакты необходимо изолировать.

Все блоки должны иметь заземление и металлизацию (т.е. все металлические поверхности должны замыкаться).

Выше сказанное справедливо и для радиооборудования, за исключением того, что питающее напряжение — 115В 400Гц. Следовательно предусматривается более мощная система защиты от перенапряжения.

Бортовые средства контроля и регистрации полетных данных включают в свой состав бортовые аварийные самописцы и регистраторы, системы сбора информации, автоматизированную систему контроля (АОК), бортовую автоматическую систему контроля (БАСК). Питание этих систем происходит от сети 200/115В 400Гц, пульты управления и сигнализации получают питание от сети 27В. Все системы имеют АЗС или встороенные системы защиты.

7.2 Общие требования к безопасности обслуживания самолета АН-124-100

К работе по техническому обслуживанию (ТО) и ремонту авиационной техники ( AT ) допускаются лица, прошедшие обучение, аттестованные и имеющие свидетельства о допуске к самостоятельному техническому обслуживанию и выполнению работ на авиационной технике и удостоверение о проверке знаний правил ПТЭ и ПТВ.

Работы на электроустановках должны производиться не менее чем двумя лицами на одном участке.

Корпуса аппаратуры должны быть надежно заземлены.

Перед включением необходимо проверять исправность контрольного оборудования и схему подводки питания.

Не допускается ремонт и устранение дефектов в аппаратуре под напряжением.

 
7.2.1 Требования к безопасности обслуживания перед началом работы

1.  Одеть спецодежду.

2.  Внимательно осмотреть рабочее место, привести его в порядок, убрать все, мешающие работе предметы.

3.  На рабочем месте должны находиться только инструмент, оборудование и комплектующие, которые предусмотрены технологией для выполнения порученного объёма работ.

4.  Проверить исправность электроинструмента, приборов, розеток, оборудования, целостность изоляции проводов, кабелей, наличия заземления.

5.  В случае обнаружения неисправностей поставить в известность инженера смены для принятия мер по устранению неисправностей.

 

7.2.2 Требования к безопасности обслуживания во время работы

1.Постоянно содержать рабочее место в чистоте.

2.Во время работы необходимо следить за исправностью электрооборудования и инструмента.

3.При обнаружении неисправностей необходимо прекратить работу и поставить в известность инженера смены.

4.Работать неисправным инструментом электроинструментом и
приборами запрещается.

5.Не оставлять без присмотра включенное электрооборудование и
приборы.

6.При прекращении подачи электроэнергии необходимо выключить электрооборудование и приборы.

7.Паяльник держать на специальной подставке и соблюдать меры предосторожности от ожогов.

8.Не допускается отвлекаться самому и отвлекать других от работы посторонними разговорами и делами.

9.Механическую обработку производить в отведенном для этого рабочем месте. Затачивать жало паяльника на рабочем месте запрещается.

10.Работа аппаратуры с открытыми кожухами разрешается только на время, необходимое для проведения регулировок (или отыскания дефектов), которые нельзя выполнить при закрытых устройствах.

7.3 Обеспечение электробезопасности обслуживания самолета АН-124-100 7.3.1 Требования электробезопасности перед началом работы

Перед началом работ следует одеть спецодежду, спецобувь и другие средства индивидуальной защиты в соответствии с характером выполняемых работ и погодными условиями.

Перед выполнением работ нужно получить необходимый инструмент, приборы, приспособления, проверить их исправность к подготовить к работе.

Перед началом работ следует проверить заземление самолета, исправность наземного источника электропитания, штепсельных разъемов.

До начала работ необходимо проверить стремянки, которые будут использо­ваны для технического обслуживания, их исправность, устойчивость, наличие страхо­вочных приспособлений.

Перед началом работ необходимо убедиться в наличии средств пожаротуше­ния на месте стоянки и внутри самолета.

Перед началом монтажных и демонтажных работ, поиском и устранением неисправностей в электрических цепях необходимо убедиться в том, что самолет обесточен, а у выключателей электропитания вывешены предупредительные знаки с надпи­сью "Не включать, идут работы".


7.3.2 Требования электробезопасности во время работы

При выполнении на самолете демонтажных и монтажных работ, при поиске и устранении неисправностей в электрических цепях, выполнении работ на борту с ис­пользованием пожароопасных материалов бортовую сеть самолета следует обесточить.

Осмотр, демонтаж и монтаж агрегатов и блоков систем, рассоединение и со­единение их штепсельных разъемов следует производить при выключенном питании этих систем.

Включать и выключать источники электропитания и проверять оборудование в процессе заправки или слива топлива не допускается.

Запрещается включать бортовую сеть или электропитание системы при нали­чии предупреждающего знака "Не включать, идут работы".

Проверять напряжение в электросетях самолета следует только с помощью предназначенных для этого приборов; определять наличие напряжения в цепи методом замыкания фаз (на "искру") запрещается.

К техническому обслуживанию авиационного и радиоэлектронного оборудования (АиРЭО) следует приступать после присоединения корпуса самолета к стационарному заземляющему устройству на месте стоянки (см. рис. 1).

Все автоматы защиты сети (АЗС), выключатели потребителей и источников электроэнергии следует установить в исходное положение.

При техническом обслуживании и проверке исправности обогревательных элементов следует соблюдать меры предосторожности, предотвращающие ожоги рук.

При демонтаже блоков и агрегатов АиРЭО во избежание коротких замыканий на штепсельные разъемы необходимо устанавливать технологические заглушки, а свободные концы электропроводов следует изолировать.

Запрещается включать и проверять работоспособность АиРЭО при заправке или сливе топлива и масла и работах по устранению течи горючих жидкостей.

При выполнении любых работ на самолете с авиационным оборудованием работающим следует знать и выполнять следующие требования:

— не прикасаться к корпусу самолета до его заземления.

— не производить монтажные и демонтажные работы, если самолет находится под током.

— не присоединять провода в местах, которые не предусмотрены монтажной схемой, а также провода с необлуженными концами или без наконечников.

— не присоединять перемычки металлизации к элементам конструкции самолета без предварительной зачистки мест присоединения от лакокрасочных и противокоррозийных покрытий.

— не подключать под один контактный болт трех проводов у распределительных устройств и более двух проводов у коммутационной аппаратуры, а также провода, сечения которых не предусмотрены для данной цепи.

— не устанавливать автоматы защиты и предохранители, которые не соответствуют номинальным данным схемы, а также осветительные и сигнальные лампы других типов и другой мощности.

— не пользоваться неисправными переносными лампами и электропаяльниками.

— не разрешается паять провода в отсека, где расположены топливные баки и а местах, где только что проводилась промывка горючими жидкостями; не применять кислотную пайку.

— не подключать к самолетным розеткам потребители (переносные лампы, паяльники и др.) без штепсельных вилок, а также потребители, мощность которых больше расчетной для данной розетки.

— не подключать к бортсети самолета бортовые и аэродромные источники электроэнергии до тех пор, пока не будут закончены работы по устранению неис­правностей в электрощитках, злектропультах и распределительных коробках.

Для проверки и измерения напряжений на контрольных гнездах и штепсельных разъемах следует применять специально предназначенные для этого кон­трольно-измерительные приборы.

Запрещается пользоваться контрольно-измерительными приборами, у которых щупы, наконечники и кабели имеют поврежденную изоляцию.

При выполнении работ по пайке оловянно-свинцовыми припоями типа ПОС следует знать и соблюдать следующие меры предосторожности:

— поскольку припои типа ПОС содержат в своем составе свинец, следует помнить о том, что при этом одежда, кожа рук загрязняется парами свинца, что может привести (при количествах, превышающих предельно допустимые концентрации) к свинцовым отравлениям организма и вызвать изменения в нервной системе, крови и сосудах.

—  во избежание возникновения пожара следует соблюдать осторожность при работе с электрическим паяльником и пользоваться специальными подставками.

7.3.3 Требования электробезопасности по окончании работы

По окончании работ на самолете необходимо тщательно проверить, не остались ли на месте выполнения работы детали, инструмент, другие посторонние предметы.

После окончания работы следует закрыть распределительные коробки, щитки, лючки и панели, вскрытые во время технического обслуживания АиРЭО.

По окончании работы следует обесточить самолет, отсоединить штепсельный разъем аэродромного источника электропитания.


7.4 Средства обеспечения электробезопасности

Одним из главных средств по обеспечению электробезопасности является правильное выполнение заземления самолета. Система электроснабжения (СЭС) на самолете выполнена по схеме с выводом земли на массу. Массой в данном случае является корпус самолета. При стоянке самолета в качестве заземляющего устройства используется заземляющая конструкция (рисунок 16), расчет которой приведен ниже.

Сопротивление растеканию тока заземляющего устройства:

,

где  – удельное электрическое сопротивление грунта, Ом*м; l – длина трубы, м.

.

Определяем ориентировочное число вертикальных заземлителей без учета коэффициента экранирования:

,

где r – допустимое сопротивление заземляющего устройства, Ом.

 шт. Округлив значение примем n=10 шт.

В соответствии с Правилами устройства электроустановок (ПУЭ) на электрических установках напряжением до 1000 В допустимое сопротивление заземляющего устройства равно не более 4 Ом.

Число вертикальных заземлителей с учетом коэффициента экранирования (зТР):

шт.

Длина соединительной полосы, м,

 м, где a – расстояние между заземлителями, м.

Сопротивление растеканию электрического тока через соединительную полосу, Ом:

Ом.

Результирующее сопротивление растеканию тока всего заземляющего устройства, Ом:

Ом

Для заземления электроприборов и установок, питающихся однофазным напряжением 36 В 400 Гц, сопротивление заземляющих устройств должно быть не выше 8 Ом. Следовательно, использование заземляющей конструкции сопротивлением 2,85 Ом в качестве заземляющего устройства допускается.

1 – бетонная плита, 2 – центральный вертикальный заземлитель,
3 – соединительная полоса


8. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ СИСТЕМЫ ДЛЯ ПРОВЕРКИ СУУ-400

Целью данного раздела является оценка экономического эффекта от внедрения на предприятии разрабатываемой системы, обеспечивающей проверку СУУ-400 в реальных условиях.

Экономическая эффективность проектируемого стенда определяется сроком окупаемости капитальных затрат на данную систему проверки.

В дальнейших расчетах будет рассматриваться экономическая эффективность двух технологических процессов: существующего и разрабатываемого. Наиболее эффективный вариант внедрения разрабатываемой системы выбирается по экономии эксплуатационных затрат на проектируемую систему проверки и существующую.

Экономический эффект разрабатываемой системы определяется из разности эксплуатационных расходов существующего и разрабатываемого технологических процессов:

DЭ = ( Сс – Ср) (1),

где:

Сс, Ср – эксплуатационные расходы существующего и разрабатываемого технологических процессов.

8.1 РАСЧЕТ КАПИТАЛЬНЫХ ВЛОЖЕНИЙ И ЭКСПЛУАТАЦИОННЫХ РАСХОДОВ РАЗРАБАТЫВАЕМОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Капитальные вложения в разработку системы определяются следующим образом:


Кр = Цп + Ссб ,

где:

Цп – цена покупных узлов (смотри таблицу 20),

Ссб – себестоимость сборки установки ( 5% от Цп ).

Таблица 16 Перечень покупных изделий.

№ п/п Наименование покупного изделия кол-во, шт цена, руб. итого, руб.
1 Модуль сбора информации и управления DT9842/8 1 57000 54000
2 Терминальная плата клеммников STP37 1 3563 3000
3 Кабель соединительный ЕР333 1 2150 2000
4 Кабель соединительный ЕР360 1 2705 2200
5 Переходник для РА 2 550 1000
6 Переходник для ВУ 2 550 1000
ИТОГО: 63200 р.

Себестоимость сборки установки принимается, как правило 5% от Цп, таким образом:

Ссб = 63200*0,05 = 3160 руб.

Исходя из этих данных, рассчитаем капитальные вложения:

Кр = 63200 + 3160= 66360 руб.

Эксплуатационные расходы разрабатываемого метода определяются следующим образом:

Ср = Зп + Зэ + Ао + Оф.с. + ПР ,

где:

Зп – заработная плата рабочих;

Зэ – затраты на потребляемую электроэнергию;

Ао – амортизационные отчисления;

Оф.с. – отчисления на социальные нужды и во внебюджетные фонды (26% от Зп );

ПР – прочие расходы (50% от Зосн ).

Перечисленные выше показатели рассчитываются следующим образом:

Зп = No * ( Зосн + Здоп ),

где:

No – число операторов;

Зосн – основная заработная плата;

Здоп – дополнительная заработная плата ( 10% от Зосн ).

В разрабатываемом процессе на проверку одного комплекта СУУ-400 затрачивается 1 час. Число операторов, осуществляющих проверку, составляет один человек. Таким образом:

Трудоемкость проверки СУУ-400 на стенде Тп = 1 чел*час.

Тарифная ставка рабочего 4-го разряда – Ст = 38 руб/час.

Число проверок в месяц Nп = 10.

No= 1 чел.

Зосн = Тпт*Nп= 1*38*10*1= 380 руб.

Здоп = Зосн *10% = 380*0,1 = 38 руб.

Зп = (380 + 38)*1 = 418 руб.

Затраты на электроэнергию определяются следующим образом:

Зэ = tраб * Сквт/ч * Е * n ,

где:

tраб – время работы установки при проверке одного самолета;

Сквт/ч – стоимость одного киловатт-часа;

Е – потребляемая энергия за 1 час;

 n – количество проверяемых комплексов;

 Исходя из нижеперечисленных данных рассчитаем затраты на электроэнергию:

tраб = 1 час.

СкВт/ч = 1,6 руб.

Е = 2 кВт/ч.

n = 10 шт.

Зэ = 1 *1,6 * 2 * 10 = 32 руб.

Амортизационные отчисления:

Ао = Kp * tраб * n / Tрес ,

где:

Трес – назначенный ресурс установки.

Назначенный ресурс установки Трес = 10000 часов, следовательно:

Ао = 66360*1*10/10000 = 66,36 руб. в месяц.

Отчисления на социальные нужды и во внебюджетные фонды составляют 26% от Зп, следовательно:

Оф.с. = 26 * 418/100 = 108,68 руб.

Прочие расходы составляют 50% от Зосн:

ПР = 418*0,5 = 209 руб.

Исходя из этих данных, эксплуатационные расходы составят:

Ср = 418+32+108,68+209+66,36=1043,04 руб.

 

8.2 РАСЧЕТ ЭКСПЛУАТАЦИОННЫХ РАСХОДОВ СУЩЕСТВУЮЩЕГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Эксплуатационные расходы существующего процесса рассчитываются следующим образом:


Сс = Зп + Зэ + Ао + Оф.с. + ПР ,

где:

Зб – затраты на содержание материальной базы (обеспечение, технический ремонт, техобслуживание).

Трудоемкость проверки СУУ-400 Тп = 3 чел*час.

Тарифная ставка рабочего 4-го разряда – Ст = 38 руб/час.

Число проверок в месяц Nп = 10.

No= 1 чел.

Зосн = Тпт*Nп= 3*38*10*1= 1140 руб.

Здоп = Зосн *10% = 1140*0,1 = 114 руб.

Зп = (1140 + 114)*1 = 1254 руб.

Затраты на электроэнергию определяются следующим образом:

Зэ = tраб * Сквт/ч * Е * n ,

где:

tраб – время работы установки при проверке одного самолета;

Сквт/ч – стоимость одного киловаттчаса;

Е – потребляемая энергия за 1 час;

n – количество проверяемых комплексов.

Исходя из нижеперечисленных данных рассчитаем затраты на электроэнергию:

tраб = 3 час.

СкВт/ч = 1,6 руб.

Е = 5 кВт/ч.

n = 10 шт.

Зэ = 3 *1,6 * 5 * 10 = 240 руб.

Амортизационные отчисления:

Ао = Kс * tраб * n / Tрес ,

где:

Кс=350000 руб.;

Трес – назначенный ресурс установки.

Назначенный ресурс установки Трес = 7000 часов, следовательно:

Ао = 350000*3*10/7000 = 1500 руб.

Отчисления на социальные нужды и во внебюджетные фонды составляют 26% от Зп, следовательно:

Оф.с. = 26 *1254/100 = 326,04 руб.

Прочие расходы составляют50% от Зосн:

ПР = 1140 * 0,5 =570 руб.

Исходя из этих данных, эксплуатационные расходы составят:

Сс = 1254 + 240 + 1500 + 326,04 + 570 = 3890,04 руб.

Подставляя все рассчитанные данные в формулу (1) получим величину экономического эффекта внедряемой технологии, в соответствии с количеством проверок (15 проверок) в год по форме В (Т=1200).

DЭ = (3890,04– 1043,04) = 2847 * 15 = 42705 руб.

  8.3 РАСЧЕТ ВРЕМЕНИ ОКУПАЕМОСТИ ВНЕДРЯЕМОЙ
ТЕХНОЛОГИИ

Расчет времени окупаемости внедряемой технологии ведется по формуле:

Ток = Кр / ( Сс – Ср ) ;

Ток = 66360 / 42705 = 1,55 года.


ЗАКЛЮЧЕНИЕ

В ходе дипломного проектирования решена задача разработки системы автоматической проверки СУУ-400 самолета Ан-124-100.

Были разработаны следующие темы:

1) анализ СУУ-400 как объекта контроля;

2) анализ действующего технологического процесса технического обслуживания;

3) разработка структурных и принципиальных схем системы контроля;

4) разработка алгоритма проверки и внешнего вида устройства проверки СУУ-400;

5) анализ безопасности при работе с системой;

6) расчёт экономической эффективности от внедрения системы автоматического контроля.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. ГОСТ 7.1-84. Библиографическое описание документа. Общие требования и правила составления. – Введ. 01.01.86 – М.: Изд-во стандартов, 1987. – 72 с.

2. Руководство по технической эксплуатации САУ-3-400 самолёта Ан-124-100.

3. СТП СГАУ 6.1.4-97 ЕСКД. Общие требования к оформлению учебных текстовых документов. Самара: Самарский Государственный Аэрокосмический Университет, 1997. – 17с.

4. ГОСТ 19605-74. Организация труда. Основные понятия. Термины и определения. – М.: Изд-во стандартов, 1982. – 65с.

5. Техническая эксплуатация авиационных электросистем и пилотажно-навигационных комплексов (преддипломная практика, дипломное проектирование, моделирование систем и решение инженерных задач): Учебное пособие / А.Н.Коптев, под ред. доцента, декана факультета Инженеров Воздушного Транспорта А.Н.Тихонова; Самарский Государственный Аэрокосмический Университет. – Самара, 1998. – 70с.

6. Разработка и оформление конструкторской документации РЭА: Справочник / под ред. к.т.н. доцента Э.Т.Романычевой. 2-е издание переработанное и дополненное. – М.: Радио и Связь, 1989. – 126с.

7. Усатенко С.Т., Ткаченюк Т.К., Терехова М.В. Выполнение электрических схем по ЕСКД: Справочник. – М.: Изд-во стандартов, 1989. – 325с.

8. Охрана труда на предприятиях гражданской авиации: учебник для вузов / Под ред. В.Г.Ененкова. – 2-е изд., перераб. И доп. – М.: Транспорт, 1990. – 288с.

9. Безопасность жизнедеятельности / Под ред. С.В.Белова. – М.: Высшая школа, 2004 – 608с.

10. Коптев А.Н. Техническая эксплуатация авиационных электросистем и пилотажно-навигационных комплексов. Учебное пособие. – Самара.: Самарский Государственный Аэрокосмический Университет, 1992. – 70с.

11. Технико-экономические расчеты при дипломном проектировании: Учеб. Пособие для радиотехнических специальностей вузов / Под ред. В.П.Гольянова. – Самара: Куйбышевский Авиационный Институт, 1992. – 208с.

12. Технология обслуживания системы автоматического управления САУ-3-400.

13. Лукин И.И., Любимов В.В. Системы электроснабжения самолётов и вертолётов. М.: Транспорт, 1970. – 268с.


Информация о работе «Разработка технологии обслуживания системы улучшения устойчивости и управляемости АН-124-100»
Раздел: Промышленность, производство
Количество знаков с пробелами: 98334
Количество таблиц: 16
Количество изображений: 2

Похожие работы

Скачать
146463
19
10

... с положительностью сальдо поступлений и расходов и малым сроком окупаемости. 6. Обеспечение безопасности жизнедеятельности в системе ДО В данном дипломном проекте разработана автоматизированная информационная система дистанционного обучения по дисциплине “Финансы и кредит”. Ее использование тесно связано с применением ПЭВМ, поэтому организация рабочего места пользователя системы должна ...

Скачать
309960
39
17

... подведомственной территории определяет особый интерес к нему со стороны органов местного самоуправления. На передний план выходят вопросы рационального управления развитием и состоянием рынка бытовых услуг на муниципальном уровне. Исследования, проведенные в работе, определили способы экономического регулирования рынка, которые целесообразно использовать на уровне муниципального управления. В ...

Скачать
568458
20
78

... для реализации системы бюджетирования Консультационной группы "Воронов и Максимов". Статья о проблемах выбора системы бюджетирования - в проекте "УПРАВЛЕНИЕ 3000". Бюджетный автомат Если вы решитесь на автоматизацию системы бюджетирования компании, перед вами сразу встанут вопросы: что выбрать, сколько платить, как внедрять. Примеряйте! О ЧЕМ РЕЧЬ В “Капитале” на стр. 44, 45 мы рассказали ...

Скачать
161549
25
0

... кадрового состава организации стоящим перед ней целям – задачи службы персонала. Анализируя ситуацию, можно сделать следующие выводы по поводу работа отдела по управлению персоналом. Естественно, что в УФПС Смоленской области филиала ФГУП «Почта России» никто не занимается прогнозом кадровых потребностей, не проводится оценка труда и персонала. Отсутствует диагностика кадровой ситуации в целом. ...

0 комментариев


Наверх