Численное решение уравнения Шредингера средствами Java
Содержание
Введение
1. Уравнение Шредингера и физический смысл его решений
1.1 Волновое уравнение Шредингера
1.2 Волновые функции в импульсном представлении
2. Методы численного решения нестационарного уравнения Шредингера
2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера
2.2 Преобразование Фурье
2.3 Метод аппроксимации оператора эволюции (split-operator method)
3. Методы численного решения стационарного уравнения Шредингера
3.1 Метод Нумерова
4. Программная реализация численных методов средствами Java
4.1 Обзор языка программирования Java
4.2 Элементы программирования Java 2 используемые в работе
Заключение
Список использованных источников
Введение
Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.
В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.
1. Уравнение Шредингера и физический смысл его решений
1.1 Волновое уравнение Шредингера
Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде
(1.1)
где Н — оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы
(1.2)
Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.
Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.
Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов
H,(1.3)
то переход к классическому уравнению Гамильтона—Якоби для функции действия S
H
можно получить из (1.3) формальным преобразованием
,
Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования
, (1.4)
если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.
Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией
,
описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.
Покажем, что из уравнения (1.1) следует важное равенство
,(1.5)
указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим
,(1.6)
Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора , получаем (1.5).
Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)
, (1.7)
где является плотностью вероятности, а вектор
(1.8)
можно назвать вектором плотности тока вероятности.
Комплексную волновую функцию всегда можно представить в виде
где и — действительные функции времени и координат. Таким образом, плотность вероятности
,
а плотность тока вероятности
.(1.9)
Из (1.9) следует, что j = 0 для всех функций , у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций .
Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и , удовлетворяющими двум связанным уравнениям. Например, если оператор Н — вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений
, ,
при этом плотность вероятности и плотность тока вероятности примут вид
, . [1]
0 комментариев