4.2 Элементы программирования Java 2 используемые в работе

При реализации метода аппроксимации оператора эволюции средствами языка программирования Java 2, использовались основные элементы объектно-ориентированного программирования, позволяющие разбить программу на более мелкие структурные части, для дальнейшего совершенствования и настраивания ее под различные физические задачи. Использование технологии AWT позволило создать графический интерфейс, наиболее удобный и понятный различному кругу пользователей. В данной работе использовался модуль JSci.math предназначенный для проведения вычислений в специализированных физических и математических задачах. В качестве среды разработки данного программно приложения использовался Eclipse 3.2.

Анимированный апплет позволяет получить наглядное решение нестационарного уравнения Шредингера в различные моменты времени с различными потенциалами. Также выполненный апплет может быть размещен на Internet-сервере и являться частью jsp-странички, что позволит использовать результаты его вычислений различным пользователям сети Internet, используя Internet-браузер для просмотра данной странички.

Программный код

public class Shreding {

final double K0 = 1.0;

final double C = 0.893;

double i = Math.sqrt(-1);

double hx = (XMax-XMin)/N;

double hp = 2*PMax/N;

double[] x = new double[N+1];{

Wave ob = new Wave();

x = ob.x();}

double[] p = new double[N+1];{

Wave ob = new Wave();

p = ob.p();}

double[] w = new double[N+1];{

Wave ob = new Wave();

w = ob.w();}

double[] rePsyX0 = new double[N+1];{

Wave ob = new Wave();

rePsyX0 = ob.rePsyX0();}

double[] imPsyX0 = new double[N+1];{

Wave ob = new Wave();

imPsyX0 = ob.imPsyX0();}

double[] psyX02 = new double[N+1];{

Wave ob = new Wave();

psyX02 = ob.psyX02();}

double[] rePsyP0 = new double[N+1];{

Wave ob = new Wave();

rePsyP0 = ob.rePsyP0();}

double[] imPsyP0 = new double[N+1];{

Wave ob = new Wave();

imPsyP0 = ob.imPsyP0();}

double[] rePsyPt2 = new double[N+1];{

Wave ob = new Wave();

rePsyPt2 = ob.rePsyPt2();}

double[] imPsyPt2 = new double[N+1];{

Wave ob = new Wave();

imPsyPt2 = ob.imPsyPt2();}

double[] rePsyX1t2 = new double[N+1];{

Wave ob = new Wave();

rePsyX1t2 = ob.rePsyX1t2();}

double[] imPsyX1t2 = new double[N+1];{

Wave ob = new Wave();

imPsyX1t2 = ob.imPsyX1t2();}

double[] rePsyX1t2V = new double[N+1];{

Wave ob = new Wave();

rePsyX1t2V = ob.rePsyX1t2V();}

double[] imPsyX1t2V = new double[N+1];{

Wave ob = new Wave();

imPsyX1t2V = ob.imPsyX1t2V();}

double[] rePsyP1t = new double[N+1];{

Wave ob = new Wave();

rePsyP1t = ob.rePsyP1t();}

double[] imPsyP1t = new double[N+1];{

Wave ob = new Wave();

imPsyP1t = ob.imPsyP1t();}

double[] rePsyP1te = new double[N+1];{

Wave ob = new Wave();

rePsyP1te = ob.rePsyP1te();}

double[] imPsyP1te = new double[N+1];{

Wave ob = new Wave();

imPsyP1te = ob.imPsyP1te();}

double[] rePsyX2t = new double[N+1];{

Wave ob = new Wave();

rePsyX2t = ob.rePsyX2t();}

double[] imPsyX2t = new double[N+1];{

Wave ob = new Wave();

imPsyX2t = ob.imPsyX2t();}

double[] psyX2t = new double[N+1];{

Wave ob = new Wave();

psyX2t = ob.psyX2t();}

/**

*

* Метод осуществляющий вычисление всех моментов времени

*/

public double[][] time(){

double M[][]= new double[N+1][20+15*(NT+1)];

double L[][]= new double[N+1][NT+1];

for (int m = 0; m < N+1; m++){

M[m][0] = x[m];

M[m][1] = p[m];

M[m][2] = w[m];

M[m][3] = rePsyX0[m];

M[m][4] = imPsyX0[m];

M[m][5] = psyX02[m];

}

for (int k = 1; k < NT+1; k++){

for (int j = 0; j < N+1; j++){

M[j][6+15*(k-1)] = rePsyP0[j];

M[j][7+15*(k-1)] = imPsyP0[j];

M[j][8+15*(k-1)] = rePsyPt2[j];

M[j][9+15*(k-1)] = imPsyPt2[j];

}

for (int m = 0; m < N+1; m++){

M[m][10+15*(k-1)] = rePsyX1t2[m];

M[m][11+15*(k-1)] = imPsyX1t2[m];

M[m][12+15*(k-1)] = rePsyX1t2V[m];

M[m][13+15*(k-1)] = imPsyX1t2V[m];

}

for (int j = 0; j < N+1; j++){

M[j][14+15*(k-1)] = rePsyP1t[j];

M[j][15+15*(k-1)] = imPsyP1t[j];

M[j][16+15*(k-1)] = rePsyP1te[j];

M[j][17+15*(k-1)] = imPsyP1te[j];

}

for (int m = 0; m < N+1; m++){

M[m][18+15*(k-1)] = rePsyX2t[m];

M[m][19+15*(k-1)] = imPsyX2t[m];

M[m][20+15*(k-1)] = psyX2t[m];

rePsyX0 = rePsyX2t;

imPsyX0 = imPsyX2t;

L[m][k] = M[m][20+15*(k-1)];

}

}return L;

}

}

class Wave{

final double K0 = 1.0;

final double C = 0.893;

double i = Math.sqrt(-1);

double hx = (XMax-XMin)/N;

double hp = 2*PMax/N;

/**

*

* Вычисление координат x

*/

double[] x(){

double X[] = new double[N+1];

for (int j = 0; j < N+1; j++){

X[j] = XMin+j*hx;

}return X;

}

double[] x = new double[N+1];{

x = x();}

**

*

* Вычисление импульсов p

*/

double[] p(){

double P[] = new double[N+1];

for (int j = 0; j < N+1; j++){

P[j] = -1*PMax + j*hp;

}return P;

}

double[] p = new double[N+1];{

p = p();}

/**

*

* Построение потенциального барьера

*/

double[] w(double a, double b, double VMax){

double W[]= new double[N+1];

for (int j = 0; j < N+1; j++){

double V = 0;

if (x[j]>a && x[j]<b){

V = VMax;

}W[j] = V;

}return W;

}

double[] w = new double[N+1];{

w = w();}

/**

*

* Действительная часть функци Psy в начальный момент времени

*/

double[] rePsyX0(){

double RePsyX0[]= new double[N+1];

for (int j = 0; j < N+1; j++){

RePsyX0[j] = C*Math.exp(-x[j]*x[j])*Math.cos(K0*x[j]);

}return RePsyX0;

}

double[] rePsyX0 = new double[N+1];{

rePsyX0 = rePsyX0();}

/**

*

* Мнимая часть функци Psy в начальный момент времени

*/

double[] imPsyX0(){

double ImPsyX0[]= new double[N+1];

for (int j = 0; j < N+1; j++){

ImPsyX0[j] = C*Math.exp(-x[j]*x[j])*Math.sin(K0*x[j]);

}return ImPsyX0;

}

double[] imPsyX0 = new double[N+1];{

imPsyX0 = imPsyX0();}

/**

*

* Вероятность в нвчальный момент времени

*/

double[] psyX02(){

double[] L = new double[N+1];

double[] K = new double[N+1];

double[] PsyX02 = new double[N+1];

L = rePsyX0;

K = imPsyX0;

for (int j = 0; j < N+1; j++){

PsyX02[j] = L[j]*L[j] + K[j]*K[j];

}return PsyX02;

}

double[] psyX02 = new double[N+1];{

psyX02 = psyX02();}

/**

*

* Первое преобразование Фурье и вычисление действительной части функции Psy

*/

double[] rePsyP0(){

double RePsyP0[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += rePsyX0[s]*Math.cos(p[j]*x[s]) + imPsyX0[s]*Math.sin(p[j]*x[s]);

}

RePsyP0[j] = hx*S/Math.sqrt(2*Math.PI);}

//rePsyX0 = rePsyX2t;

//imPsyX0 = imPsyX2t;

return RePsyP0;

}

double[] rePsyP0 = new double[N+1];{

rePsyP0 = rePsyP0();}

/**

*

* Первое преобразование Фурье и вычисление мнимой части функции Psy

*/

double[] imPsyP0(){

double ImPsyP0[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += imPsyX0[s]*Math.cos(p[j]*x[s]) - rePsyX0[s]*Math.sin(p[j]*x[s]);

}

ImPsyP0[j] = hx*S/Math.sqrt(2*Math.PI);}

//rePsyX0 = rePsyX2t;

//imPsyX0 = imPsyX2t;

return ImPsyP0;

}

double[] imPsyP0 = new double[N+1];{

imPsyP0 = imPsyP0();}

/**

*

* Произведение действительной части функции Psy и первой составляющей оператора расщепления

*/

double[] rePsyPt2(){

double RePsyPt2[]= new double[N+1];

for (int j=0; j<N+1; j++){

RePsyPt2[j] = rePsyP0[j]*Math.cos(p[j]*p[j]*DT/2) + imPsyP0[j]*Math.sin(p[j]*p[j]*DT/2);

}return RePsyPt2;

}

double[] rePsyPt2 = new double[N+1];{

rePsyPt2 = rePsyPt2();}

/**

*

* Произведение мнимой части функции Psy и первой составляющей оператора расщепления

*/

double[] imPsyPt2(){

double ImPsyPt2[]= new double[N+1];

for (int j=0; j<N+1; j++){

ImPsyPt2[j] = imPsyP0[j]*Math.cos(p[j]*p[j]*DT/2) - rePsyP0[j]*Math.sin(p[j]*p[j]*DT/2)*0;

}return ImPsyPt2;

}

double[] imPsyPt2 = new double[N+1];{

imPsyPt2 = imPsyPt2();}

/**

*

* Второе преобразование Фурье и вычисление действительной части функции Psy

*/

double[] rePsyX1t2(){

double RePsyX1t2[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += rePsyPt2[s]*Math.cos(p[s]*x[j]) - imPsyPt2[s]*Math.sin(p[s]*x[j]);

}

RePsyX1t2[j] = hp*S/Math.sqrt(2*Math.PI);

}return RePsyX1t2;

}

double[] rePsyX1t2 = new double[N+1];{

rePsyX1t2 = rePsyX1t2();}

/**

*

* Второе преобразование Фурье и вычисление мнимой части функции Psy

*/

double[] imPsyX1t2(){

double ImPsyX1t2[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += imPsyPt2[s]*Math.cos(p[s]*x[j]) + rePsyPt2[s]*Math.sin(p[s]*x[j]);

}

ImPsyX1t2[j] = hp*S/Math.sqrt(2*Math.PI);

}return ImPsyX1t2;

}

double[] imPsyX1t2 = new double[N+1];{

imPsyX1t2 = imPsyX1t2();}

/**

*

* Произведение действительной части функции Psy и второй составляющей оператора расщепления

*/

double[] rePsyX1t2V(){

double RePsyX1t2V[]= new double[N+1];

for (int j=0; j<N+1; j++){

RePsyX1t2V[j] = rePsyX1t2[j]*Math.cos(w[j]*DT) + imPsyX1t2[j]*Math.sin(w[j]*DT);

}return RePsyX1t2V;

}

double[] rePsyX1t2V = new double[N+1];{

rePsyX1t2V = rePsyX1t2V();}

/**

*

* Произведение мнимой части функции Psy и второй составляющей оператора расщепления

*/

double[] imPsyX1t2V(){

double ImPsyX1t2V[]= new double[N+1];

for (int j=0; j<N+1; j++){

ImPsyX1t2V[j] = imPsyX1t2[j]*Math.cos(w[j]*DT) - rePsyX1t2[j]*Math.sin(w[j]*DT);

}return ImPsyX1t2V;

}

double[] imPsyX1t2V = new double[N+1];{

imPsyX1t2V = imPsyX1t2V();}

/**

*

* Третье преобразование Фурье и вычисление действительной части функции Psy

*/

double[] rePsyP1t(){

double RePsyP1t[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += rePsyX1t2V[s]*Math.cos(p[j]*x[s]) + imPsyX1t2V[s]*Math.sin(p[j]*x[s]);

}

RePsyP1t[j] = hx*S/Math.sqrt(2*Math.PI);

}return RePsyP1t;

}

double[] rePsyP1t = new double[N+1];{

rePsyP1t = rePsyP1t();}

/**

*

* Третье преобразование Фурье и вычисление мнимой части функции Psy

*/

double[] imPsyP1t(){

double ImPsyP1t[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += imPsyX1t2V[s]*Math.cos(p[j]*x[s]) - rePsyX1t2V[s]*Math.sin(p[j]*x[s]);

}

ImPsyP1t[j] = hx*S/Math.sqrt(2*Math.PI);

}return ImPsyP1t;

}

double[] imPsyP1t = new double[N+1];{

imPsyP1t = imPsyP1t();}

/**

*

* Произведение действительной части функции Psy и третьей составляющей оператора расщепления

*/

double[] rePsyP1te(){

double RePsyP1te[]= new double[N+1];

for (int j=0; j<N+1; j++){

RePsyP1te[j] = rePsyP1t[j]*Math.cos(p[j]*p[j]*DT/2) + imPsyP1t[j]*Math.sin(p[j]*p[j]*DT/2);

}return RePsyP1te;

}

double[] rePsyP1te = new double[N+1];{

rePsyP1te = rePsyP1te();}

/**

*

* Произведение мнимой части функции Psy и третьей составляющей оператора расщепления

*/

double[] imPsyP1te(){

double ImPsyP1te[]= new double[N+1];

for (int j=0; j<N+1; j++){

ImPsyP1te[j] = imPsyP1t[j]*Math.cos(p[j]*p[j]*DT/2) - rePsyP1t[j]*Math.sin(p[j]*p[j]*DT/2);

}return ImPsyP1te;

}

double[] imPsyP1te = new double[N+1];{

imPsyP1te = imPsyP1te();}

/**

*

* Четвертое преобразование Фурье и вычисление действительной части функции Psy

*/

double[] rePsyX2t(){

double RePsyX2t[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += rePsyP1te[s]*Math.cos(p[s]*x[j]) - imPsyP1te[s]*Math.sin(p[s]*x[j]);

}

RePsyX2t[j] = hp*S/Math.sqrt(2*Math.PI);

}return RePsyX2t;

}

double[] rePsyX2t = new double[N+1];{

rePsyX2t = rePsyX2t();}

/**

*

* Четвертое преобразование Фурье и вычисление мнимой части функции Psy

*/

double[] imPsyX2t(){

double ImPsyX2t[]= new double[N+1];

for (int j=0; j<N+1; j++){

double S = 0;

for (int s=0; s<N+1; s++){

S += imPsyP1te[s]*Math.cos(p[s]*x[j]) + rePsyP1te[s]*Math.sin(p[s]*x[j]);

}

ImPsyX2t[j] = hp*S/Math.sqrt(2*Math.PI);

}return ImPsyX2t;

}

double[] imPsyX2t = new double[N+1];{

imPsyX2t = imPsyX2t();}

/**

*

* Вычисление вероятности в момент DT

*/

double[] psyX2t(){

double[] L = new double[N+1];

double[] K = new double[N+1];

double[] PsyX2t = new double[N+1];

L = rePsyX2t;

K = imPsyX2t;

for (int j = 0; j < N+1; j++){

PsyX2t[j] = L[j]*L[j] + K[j]*K[j];

}return PsyX2t;

}

}

Графики поведения волновых функций

Прямоугольный потенциальный барьер

graph.jpg

graph.jpg


graph.jpg

graph.jpg

Барьер гауссова функция



Заключение

Численное решение нестационарного уравнения Шредингера имеет важное значение для компьютерного исследования квантовых систем. В данной работе рассмотрены два метода численного решения одномерного нестационарного уравнения Шредингера: метод конечных разностей и метод аппроксимации оператора эволюции. По результатам вычислений построены графики поведения волновой функции в зависимости от времени для ступенчатого потенциала.

Полученные значения полностью соответствуют теоретическим данным для квантовомеханической задачи со ступенчатым потенциалом и наглядно отражают процессы отражения и прохождения частицы через потенциальный барьер. Также рассмотренные численные методы могут использоваться для расчета других видов волновых функций и потенциалов.


Список использованных источников

1. А.С. Давыдов. Квантовая механика//М.,: "Наука", 1973г., 704 с

2. З. Флюгге. Задачи по квантовой механике//М.: "Мир", Т.1, 1974г., 343 с

3. Е.А. Волкова, А.М. Попов, А.Т. Рахимов, "Квантовая механика на персональном компьютере"//Москва.: "УРСС", 1995.

4. Дж. Мэтьюз, Р. Уокер "Математические методы физики".

4. С.В. Поршнев Моделирование квантовых систем //www.exponenta.ru

6. П.Ноутон, Г.Шилдт Java 2 Наиболее полное руководство//С-Петербург: "БХВ-Петербург" 2007.


Информация о работе «Численное решение уравнения Шредингера средствами Java»
Раздел: Физика
Количество знаков с пробелами: 44370
Количество таблиц: 0
Количество изображений: 9

0 комментариев


Наверх