1.2 Кремній
Кремній Si – елемент IV групи Періодичної системи елементів; після кисню – найпоширеніший елемент у природі: він становить приблизно 1\4 маси земної кори. Численні сполуки кремнію входять до більшості гірських порід і мінералів. Пісок і глина, що утворять мінеральну частину ґрунту, також являють собою сполуки кремнію. Найпоширенішою сполукою цього елемента є двоокис кремнію SiО2. Вільний двоокис кремнію зустрічається – головним чином у вигляді мінералу кварцу. Кремній у вільному стані в природі не зустрічається.
Кремній, як і германій, кристалізується в складній кубічній просторовій решітці типу алмаза. Кристалічний кремній – темно-сіра тверда й тендітна речовина з металевим блиском, хімічно досить інертне.
Кремній добре розчинний у багатьох розплавлених металах. При кімнатній температурі він хімічно стійкий. У воді не розчинний. Не реагує з багатьма кислотами в будь-якій концентрації. Однак добре розчиняється в суміші плавикової й азотної кислот. Менш інтенсивно кремній розчиняється в азотній кислоті з невеликими добавками брому або перекису водню. Кремній добре розчиняється в киплячих лугах; невеликі добавки перекису водню до киплячого водяного розчину лугу прискорюють його розчинення. Ще більш інтенсивно кремній розчиняється в розплавлених лугах.
Основними сполуками, які використаються в напівпровідниковому виробництві для одержання полікристалічного й монокристалічного кремнію, є двоокис кремнію, моноокис кремнію, тетрахлорид кремнію, полікристалічний, монокристалічний і т.д [2].
Двоокис кремнію Si2 – кварцове скло, по зовнішньому вигляді мало відрізняється від звичайного скла й має високу хімічну стійкість до багатьом кислотам, за винятком плавикової, котра, взаємодіючи із кварцом, утворить кремнієву кислоту.
Двоокис кремнію реагує з розплавленими металами: літієм, натрієм, калієм, кальцієм, стронцієм, барієм, магнієм, алюмінієм, лантаном, церієм, кремнієм і марганцем. При високих температурах двоокис кремнію взаємодіє із твердими елементами: залізом, титаном, танталом, вольфрамом і бором, а також з газоподібним фтором.
При сплавці двоокису кремнію одержують кварцове скло, що широко застосовують при виробництві напівпровідникових матеріалів для виготовлення робочих камер, ампул і касет.
Моноокис кремнію Si у природі не зустрічається й може бути отримана відновленням двоокису при 13,50°С кремнієм або при 1500°С вуглецем. Моноокис кремнію при кімнатній температурі являє собою аморфна речовина у вигляді порошку, гранул або спечених шматочків від бежевого до чорного квітів. Навіть при високих температурах моноокис кремнію не проводить електричний струм, тому неї використають в інтегральній мікроплівковій технології для виготовлення ізоляційних покриттів, діелектричних і плівок, що просвітлюють. Моноокис кремнію знаходить застосування також світлотехнічний і оптичної промисловості.
Випускається моноокис кремнію двох категорій. Моно окис першої категорії використають для напилювання діелектричних плечей нок і шарів плівкових конденсаторів, а також для одержання ізоляційних покриттів інтегральних схем, а другої категорії – для утворення захисних шарів на напівпровідникових кристалах.
Тетрахлорид кремнію SiCl4 одержують хлоруванням при 250—600° С технічного кремнію або одного з його сплавів – феросіліція, що містить 60—90% кремнію. При кімнатній температурі тетрахлорид кремнію являє собою прозору безбарвну рідину. Тетрахлорид кремнію добре змішується з органічними речовинами: ефіром, хлороформом, бензолом і бензином. При взаємодії з водою й у вологому повітрі він розкладається на хлористий водень і силікагель.
Полікристалічний кремній одержують двома основними способами: водневим відновленням з галоїдних сполук (хлорсиланів) і термічним розкладанням гідридів (моносилана) і випускають у вигляді стрижнів, діаметр яких залежить від подальшого застосування. Стрижні великого діаметра (до 100 мм) використають для мірних завантажень у тиглі установок при вирощуванні монокристалічного кремнію по методу Чохральского, а малого (до 40 мм) – як заготівлі для бестигельної зонної плавки.
Монокристалічний кремній одержують із полікристалічного вирощуванням з розплаву по методу Чохральского або бестигельною зонною плавкою. Перший метод застосовують, як правило, для одержання низькоомних злитків з питомим опором, що не перевищує 250 Ом-см. Отримані цим методом злитки мають великий діаметр (до 60-80 мм). Другий метод використають для одержання високоомних монокристалічних злитків з питомим опором до 2000 Ом-см. Діаметр цих злитків звичайно менше (до 30 мм).
Рисунок 5 - Залежність питомого опору кремнію від концентрації акцепторних і донорних домішок [2]
Промисловість випускає різні марки монокристалічного кремнію, тому що в цей час він, володіючи рядом спеціальних властивостей, займає провідне місце серед інших матеріалів, застосовуваних для виготовлення напівпровідникових приладів. Кремнієві прилади мають малі зворотні струми, працюють при підвищених температурах, допускають високі питомі навантаження. Питомий опір кремнію, як і германія, залежить від концентрації акцепторних і донорних домішок (рис. 5).
... Висновки. Одним з перспективних напрямків сучасної фізики є дослідження поверхні твердого тіла та взаємодії поверхневих електромагнітних хвиль інфрачервоного діапазону з поверхнею та тонкими шарами напівпровідників . При взаємодії світлової хвилі з поверхнею твердого тіла виникає поверхнева електромагнітна хвиля. Квазічастинки, які відповідають цим коливанням, що мають змішаний електромагнітно- ...
... ій зоні. Для тіл, у яких ширина забороненої зони не перевищує 1 еВ, уже при кімнатній температурі в зоні провідності виявляється достатнє число електронів, а у валентній зоні – вакансій, щоб обумовити відносно високу електропровідність. Такі тіла звичайно називають напівпровідниками. Звідси стає ясним, що розподіл твердих тіл другої групи, на діелектрики й напівпровідників є чисто умовним. У ...
... заряджені дефекти впливають також на матричні елементи для переходів між нелокалізованими станами поблизу країв рухливості, створюючи флуктуації потенціалу. РОЗДІЛ 2 ФОТОІНДУКОВАНІ ЗМІНИ ОПТИЧНИХ ПАРАМЕТРІВ ТОНКИХ ШАРІВ НЕКРИСТАЛІЧНИХ ХАЛЬКОГЕНІДІВ 2.1. Структурні одиниці та фізико-хіміні особливості некристалічних халькогенідів Структура склоподібних і аморфних халькогенідів може бути ...
... параметрів при термоциклюванні, а саме ця особливість є принциповою для практичного використання. Перспективними для вирішення проблеми деградації об’ємних матеріалів з ФПМН є склокерамічні матеріали на основі компонента з фазовим переходом метал-напівпровідник. Такі матеріали можна отримати за керамічною технологією. Важливою вимогою до них, окрім стабільної поведінки при термоциклюванні, є ...
0 комментариев