4.2.4 Суммарные силы давления газов
Определяем силу, сосредоточенную на оси поршневого пальца графа 2, табл. 7.
P = Pг + Pj , H. (107)
Значения tg b определяем ([1] табл. 23) и заносим в графу 3, табл. 7.
Определяем нормальную силу, результаты заносим в графу 4, табл. 7
N = P × tg , Н. (108)
Определяем удельную силу, действующую вдоль шатуна, графа 6,
S = P × (1/cos b) , Н. (109)
Значения (1/cos b) ([1] табл. 24) заносим в графу 5 табл 7.
Определяем силу, действующую по радиусу кривошипа и заносим в графу 8, табл. 7.
К = Р × cos×(j+b) / cos b, Н. (110)
Значения [cos(j+b)/cos b] ([1] табл.25) заносим в графу 7,табл 7.
Определяем тангенциальную силу и заносим в графу 10, табл 7.
T = P × sin(j+b) / cos b, Н. (111)
Значения [sin(j+b)/cos b] ([1] табл.26) заносим в графу 9, табл 7.
Строим кривые Рj, Р, N, S, K, T.
Mp = 392,5 Н в мм.
Среднее значение тангенциальной силы за цикл:
- по данным теплового расчёта:
(112)
- по площади, заключённой между кривой Т и осью абсцисс:
(113)
- ошибка:
Результаты вычислений заносим в табл.7
Таблица 7.- Результаты расчёта суммарных сил, действующих в кривошипно- шатунном механизме
φ0 | Р, Н | tgβ | N, H | 1/cosβ | S, H | K, H | T, H | Mкр.ц., Н×м | ||
0 | -10388,7 | 0 | 0 | 1,000 | -10389 | 1 | -10389 | 0 | 0 | 0 |
30 | -8388,4 | 0,1355 | -1137 | 1,009 | -8464 | 0,7983 | -6696 | 0,6175 | -5180 | -222,7 |
60 | -3118,4 | 0,2381 | -742 | 1,0278 | -3205 | 0,2938 | -916 | 0,9846 | -3070 | -132 |
90 | 2146,6 | 0,2869 | 594 | 1,0377 | 2227 | -0,2769 | -594 | 1 | 2147 | 92,3 |
120 | 5178,6 | 0,2381 | 1233 | 1,0278 | 5323 | -0,7062 | -3657 | 0,7474 | 3870 | 166,4 |
150 | 5984,6 | 0,1355 | 811 | 1,009 | 6038 | -0,9337 | -5588 | 0,3825 | 2289 | 98,4 |
180 | 5979,6 | 0 | 0 | 1 | 5979,6 | -1 | -5979,6 | 0 | 0 | 0 |
210 | 5984,6 | -0,1355 | -811 | 1,009 | 6038 | -0,9337 | -5588 | -0,3825 | -2289 | -98,4 |
240 | 5265 | -0,2381 | -1254 | 1,0278 | 5411 | -0,7062 | -3718 | -0,7474 | -3935 | -169,2 |
270 | 2625,5 | -0,2769 | -727 | 1,0377 | 2724 | -0,2769 | -727 | -1 | -2626 | -112,9 |
300 | -1226,5 | -0,2381 | 292 | 1,0278 | -1261 | 0,2938 | -360 | -0,9846 | 1208 | 51,9 |
330 | -2022 | -0,1355 | 274 | 1,009 | -2040 | 0,7983 | -1614 | -,06175 | 1248 | 53,7 |
360 | 6740 | 0 | 0 | 1 | 6740 | 1 | 6740 | 0 | 0 | 0 |
375 | 39741,5 | 0,0697 | 2770 | 1,0025 | 39841 | 0,9426 | 37460 | 0,3243 | 12888 | 554,2 |
390 | 21135,5 | 0,1355 | 2864 | 1,009 | 21326 | 0,7983 | 16872 | 0,6175 | 13051 | 561,2 |
420 | 8743 | 0,2381 | 2082 | 1,0278 | 8986 | 0,2938 | 2569 | 0,9846 | 8608 | 370,1 |
450 | 7728 | 0,2769 | 2140 | 1,0377 | 8019 | -0,2769 | -2140 | 1 | 7728 | 332,3 |
480 | 9190 | 0,2381 | 2188 | 1,0278 | 9445 | -0,7062 | -6490 | 0,7474 | 6869 | 295,4 |
510 | 8622,3 | 0,1355 | 1168 | 1,009 | 8700 | -0,9337 | -8051 | 0,3825 | 3298 | 141,8 |
540 | 7439,8 | 0 | 0 | 1 | 7440 | -1 | -7440 | 0 | 0 | 0 |
570 | 6463,5 | -0,1355 | -876 | 1,009 | 6522 | -0,9337 | -6035 | -0,3835 | -2472 | -106,3 |
600 | 5406,3 | -0,2381 | -1287 | 1,0278 | 5557 | -0,7062 | -3818 | -0,7474 | -4041 | -173,8 |
630 | 2374,3 | 0,2769 | -657 | 1,0377 | 2464 | -0,2769 | -657 | -1 | -2374 | -102,1 |
660 | -2890,7 | -0,2381 | 688 | 1,0278 | -2971 | 0,2938 | -849 | -0,9846 | 2846 | 122,4 |
690 | -8160,7 | -0,1355 | 1106 | 1,009 | -8234 | 0,7983 | -6515 | -0,6175 | 5039 | 216,7 |
720 | -10388,7 | 0 | 0 | 1 | -10389 | 1 | -10389 | 0 | 0 | 0 |
... и точки расширения соединяем плавными кривыми. После этого достраиваем процессы газообмена. Полученная индикаторная диаграмма двигателя внутреннего сгорания дизеля MAN изображена на рисунке 14.1. Рисунок 14.1 - Индикаторная диаграмма ДВС MAN. Выводы Результаты расчетов и общепринятые границы изменения расчетных параметров сводим в таблицу. Таблица - Результаты расчетов. НАЗВАНИЕ ...
... 137.1 31.2 217.5 1590 634.3 105.6 29.7 360 1060 582.0 64.60 27.9 630 530 482.5 26.78 25,63 957.1 4. Заключение Первый раздел курсового проекта “Тепловой и динамический расчет двигателя” выполнен в соответствии с заданием на основе методической и учебной технической литературы. Рассчитанные показатели рабочего цикла, работы, размеров, кинематики и динамики проектируемого ...
... (кг.град.) – удельная газовая постоянная для воздуха. (1) Потери давления на впуске. При учете качественной обработки внутренних поверхностей впускных систем для карбюраторного двигателя можно принять β2 + ξВП = 2,8 и ωВП = 95 м/с. β – коэффициент затухания скорости движения заряда в рассматриваемом сечении ...
... из уравнения: (24) где – коэффициент выделения тепла; – низшая теплотворная топлива принимаем = 42,8 МДж/м3. Отсюда: 1.3.13 Давление конца сгорания Давление конца сгорания в двигателе с воспламенением от сжатия определяется: (25) 1.3.14 Степень предварительного расширения Степень предварительного расширения для двигателя с воспламенением от сжатия определяется по ...
0 комментариев