2.3 Заложення, нахил та інтервал прямої лінії

При вирішенні багатьох задач у проекціях з числовими відмітками використовують такі поняття та визначення: заложення, нахил та інтервал прямої. Для з'ясування значення цих понять та визначень розглянемо рис. 2.7, де дано наочне зображення прямої AВ і її горизонтальна проекція A2,6 В4,4 на основну площину π0 .

Заложенням називається довжина горизонтальної проекції від- різка прямої на основну площину і позначається буквою L /див. рис. 2.7/: L = A2,6В4,4 - заложення відрізка прямої А В.

Різниця числових відміток кінців відрізка прямої, тобто різниця висот або координат Z точок його кінців, називається підйомом відрізка прямої і позначається буквою h /рис. 2.7/ на відміну від позначення висот точок відрізка прямої буквою Н .

Підйом h відрізка AB /див. рис. 2.7/: h = НВА = 4.4 -- 2,6 = 1,8 м.

Заложення та підйом відрізка прямої вимірюються в одиницях масштабу.

Нахилом прямої і називається відношення підйоме відрізка прямої до заложення цього ж відрізка /див. рис. 2.7, ∆ABB : і = h/L

Оскільки кут, утворений прямою і її проекцією на основну площину π, дорівнює куту α - куту нахилу прямої до площини π0 /див. рис. 2.7, ABB/, можна дати таке визначення нахилу прямої: нахил прямої дорівнює тангенсу кута нахилу прямої до основної площини: i = tg α = h/L /2.1/

Нахил прямої задається в десяткових дробах aбo у вигляді відношення 1:n, де n - будь-яке додатне число. Наприклад, нахил прямої AB /див. рис. 2.7, ∆АВВ / дорівнює: i=h/L= I.8/3.6 = = 0.5 - нахил заданий в десяткових дробах або i=1 : 2 - нахил прямої А В заданий, у вигляді відношення.

Іноді нахил вказують в промилях /позначається "°/оо"/ або в процентах /позначається "%"/. Промиле - одна тисячна будь-якого числа, а процент - сота частина будь-якого числа, тоді промиле - це десята частина процента. Наприклад:

 І°/оо = 0,1% = 1:1000 = 0,001;

 10°/оо = 1% = 1:100 = 0,01;

 50°/оо = 5% = 1:20 = 0,05;

 500°/оо = 50% = І:2 = 0,5.

На рис. 2.7 точки С та D прямої АВ мають числові відмітки, які дорівнюють 3 та 4, тобто підйом відрізка CD дорівнює одиниці, а довжина відрізка С3D4 - проекція відрізка CD на основну площину - являє собою інтервал прямої AВ.

Довжина горизонтальної проекції відрізка прямої, підйом якої дорівнює одиниці, називається інтервалом прямої /позначається буквою l /. Інтервал прямої чисельно дорівнює відношенню відрізка прямої до його підйому /див. рис. 2.7, ∆CDD/: l = L/h (2.2)

Інтервал прямої AB /див. рис. 2.7/ становить l = 3,6/1,8 = 2 м.

З /2.2/ випливає, що при h = 1 заложення чисельно дорівнює інтервалу, тобто і = l. Тоді інтервалу прямої можна дати і інше визначення: інтервал прямої є заложенням при підйомі, рівному одиниці.

Якщо знати нахил прямої або її кут нахилу до основної площини, пряму загального положення в проекціях з числовими відмітками можна задати горизонтальною проекцією з відміченими на ній однією точкою з числовою відміткою і нахилом прямої /рис. 2.8/ або кутом її нахилу /рис. 2.9/ до основної площини із зазначенням напряму спуску. Напрям спуску відмічається на кресленні відрізком прямої, на одному кінці якого показано стрілку, що вказує напрям зменшування числових відміток точок прямої.

З /2.1/ та /2.2/ виплаває, що і = 1/l = 1:l, тобто нахил та інтервал прямої - величини, обернені одна до одної. Наприклад, якщо нахил прямої задано у вигляді десяткового дробу і = 0,5, то цьому нахилу прямої відповідав інтервал прямої l = 1/і = 1/0,5 = 2; якщо нахил пряної задано у вигляді відношення і = 1:2,5, то цьому нахилу прямої відповідає інтервал прямої l = 2,5, оскільки і = 1:l = 1:2,5. З /2.1/ випливає, що при L = 1 нахил прямої чисельно дорівнює підйому, тобто і = Нl, отже, можна дати таке означення нахилу: нахилом прямої називається величина підйому відрізка прямої при заложенні цього ж відрізка прямої, який дорівнює одиниці.

Таким чином, якщо на проекції прямої на плані взяти відрізок, чисельно рівний одиниці масштабу, то підйом цього відрізка, заложення якого одиниця, чисельно дорівнює нахилу прямої. На цьому грунтується графічне визначення нахилу прямої.

Наприклад, потрібно графічно визначити нахил прямої AВ , яка зображена на плані своєю проекцією А4,2В1,6 /рис. 2.10/. Для цього будуємо профіль АВ відрізка прямої AB на вертикальну площину π у масштабі плана. Потім на горизонтальній проекції А4.2 В1,6 відкладаємо відрізок, заложения якого L = 1, і знаходимо підйом h цього відрізка, який чисельно буде дорівнювати нахилу i прямої AB : і = h = 0,6.


2.4 Градуювання прямої

Кінці відрізка прямої часто задають на плані числовими відмітками, які виражаються дробними числами. При розв'язуванні багатьох задач треба знати положення проекцій точок прямої з ціло-чисельними відмітками.

Розглянемо докладніше рис. 2.7. Пряма AB і її проекція А2,6 В4,4 розташовані у вертикальній площині π. В цій же площині паралельно проекції А2,6 В4,4, а отже, паралельно площині π0 проводимо лінію рівня - горизонтальну пряму з числовою відміткою, рівною 3, і вище цієї лінії рівня на відстані, що дорівнює одній одиниці масштабу, проводимо лінію рівня з числовою відміткою 4.

 Ці лінії рівня перетинають пряму AB у точках С та D , які будуть мати числові відмітки відповідно 3 та 4. Спроецюємо точки С та D на горизонтальну проекцію А2,6 В4,4, одержимо проекції С3 та D4.

Існує декілька способів градуювання прямої, що являють собою різні варіанти розв'язування задачі ділення відрізка у данному відношенні.

1. Спосіб профіля. По цьому будують суміщений з основною площиною або з іншою горизонтальною площиною профіль прямої, причому висоти точок відкладають або в масштабі плану, або з метою більш точною градувванш прямої в більшому масштабі, ніж масштаб плана. Потім паралельно осі проводять ряд прямих на відстані одна від одної, що дорівнює одиниці масштабу, в якому відкладались висоти точок прямої. Приймають ці прямі за лінії рівня з ділочисельними відмітками. Опроеціювавши потім ці точки на проекцію прямої на плані, одержують на ній точки, які мають цілочисельні відмітки, таким чином виконавши операцію градуювання прямої.

Способом профіля розв'яжемо задачу на градуювання відрізка прямої АВ/рис. 2.11/. Для цього:

1/ будуємо суміщенний з основною площиною π0 профіль АВ відрізка прямої AB, відкладаюча висоти точок А та В у масштабі плана;

2/ паралельно осі х проводимо ряд паралельних прямих, віддалених одна від одної на відстань, що дорівнює одиниці масштабу, і приймаємо ці прямі за лінії рівня з числовими відмітками 1, 2, 3, 4 та 5;

3/ знаходимо точки перетину ліній рівня з профілем AВ : точки 2, 3, 4 та 5 будуть мата числові відмітки, рівні 2, 3, 4 та 5;

4/ точки 2, 3, 4 та 5 опроектуємо на А1,3 В5,2, при цьому точки 2, 3, 4 та 5 перетину лінїй проекційного зв'язку з А/,3 B5,2 і будуть проекціями точок, які мають цілочисельні відмітки 2, 3, 4 та 5.

З рис. 2.11 легко графічно, тобто без обчислень, визначити інтервал l прямої AВ - він дорівнює довжині відрізка проекції прямої на плані між точками, які мають цілочисельні послідовні відмітки, оскільки підйом цих відрізків дорівнює одиниці масштабу.

Після градуювання прямої можна визначити відмітку будь-якої точки прямої і задати на ній точку, що має дану відмітку. Для цього відрізок між цілочисельними відмітками ділимо у пропорціональному відношенні.

Градуювання прямої способом профіля, який полягає у проведенні через рівні відстані паралельних прямих, покладено в основупалетки, що використовується при наведені горизонталей рельефа земної поверхні на планах і картах.


Информация о работе «Застосування нарисної геометрії у геодезії»
Раздел: Геология
Количество знаков с пробелами: 69915
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
32506
0
0

... . Відомо, що надра будь-якої держави, її мінерально-сировинні ресурси, являють собою основу промислового розвитку країни. Україна займає одне з провідних місць серед держав світу щодо кількості корисних копалин та їх різноманітності. Проблеми гірничодобувних галузей промисловості призвели до значного скорочення видобутку сировини, погіршенню умов праці гірників, скороченню фронту підготовчих роб ...

0 комментариев


Наверх