2. Способ пропорціонального ділення. Суть його розглянемо на прикладі градуювання прямої AВ , проекцій якої зображена на рис. 2.12.

З одного кінця відрізка прямої /точки А1,4 / проведемо допоміжну пряму в довільному напрямку, на якій відкладемо в масштабі плана або в більшому відрізок АС', рівний підйому відрізка AB : h = HB - HA = (4.8 - І.4)l1 = 3,4l , де l1 - oдиниця масштабу, в якому вимірюємо підйом відрізка АВ.

На прямій АС від точки A1,4 відкладемо відрізок, рівний 0,6l1 , і позначимо точку 2. Точки 3, 4 віддалені одна від одної на відстань l1. На рис. 2.12 l1 дорівнює одиниці масштабу плана, тобто l1 = 1м. Точка С віддалена від точки 4 на відстань, що дорівнює 0,8l1.

Кінцеву точку С сополучимо з точкою В4,8 і з кожної точки поділки /точки 2, 3, 4/ проведемо прямі, паралельні СВ4,8. Ці прямі визначають в перетині з А1,4 В4,8 проекції точок прямої AВ , що мають числові відмітки, рівні цілим числам /див. рис. 2.12/. Це дає змогу поряд з визначенням числових відміток будь-якої точки відрізка прямої знайти також графічно і інтервал прямої l /див. рис. 2.12/.

3. Аналітичний спосіб дає змогу визначити положення точок прямої, що мають цілочисельні послідовні відмітки, за допомогою обчислення.

Проградуюємо аналітичним способом пряму АВ, наочне зображення якої показано на рис. 2.7, а зображення на плані - на рис. 2.13. Градуювання виконуємо в такій послідовності: визначаємо інтервал прямої за формулою /2.2/: підставляючи L = 3,6 м, h = 1,8 м, одержуємо l = L/h = 3,6/1,8 = 2м. Заходимо положення точки С з цілочисельною відміткою 3, наближчої точки А2,6 її визначимо таким чином. На рис. 2.7 із порівняння подібних трикутників АСС та СDD можна скласти пропорцію: x/h = l/1, де x - відстань проекції точки С , що має цілочисельну відмітку 3 /точка С3/; до точки А2,6; h AC - підйом відрізка АС; l - інтервал прямої. З цієї пропорції знаходимо: x = hACl = /3 - 2.6/ 2 = 0.8 м. Потім від точки С відкладаємо відрізок, рівний інтервалу прямої AВ /l = 2 м/, і позначаємо точку з числовою відміткою 4 /точка D4 /.

Приведену в останньому прикладі на градуювання прямої пропорцію можна використовувати для визначення відстані х від проекції точки прямої з відомою числовою відміткою /відома точка прямої/ до проекції точки прямої, числова відмітка якої задана. Відстань х знайдемо за формулою: x = hl , /2.3/

де h - підйом відрізка прямої між визначуваною і відомою точками прямої; l - інтервал прямої.


2.5 Прямі часткового положення

Пряма відносно основної площини може займати часткове положення: бути паралельного /горизонтальна пряма, або горизонталь, це лінія рівня/ або перпендикулярною /горизонтально-проеціююча пряма, або проецююча/ до основної площини.

На рис. 2.14 показані зображення прямих часткового положення на плані.

У горизонтальної прямої числові відмітки будь-яких двох точок однакові, тому горизонтальна пряма може бути задана на плані своєю проекцією і проекцією двох її точок, числові відмітки яких однакові, наприклад пряма AВ . Горизонтальну пряму можна позначити, вказуючи лише її числову відмітку, наприклад горизонталь з числовою відміткою 5.

Проеціюючу пряму на плані завжди позначають проекціями двох нетотожних точок прямої, які на плані збігаються /проецюються у точку/, наприклад проеціююча пряма CD.

2.6 Взаємне полонення двох прямих

Взаємне положення прямих на плані легко визначити побудовою проекцій прямих на деяку вертикальну площину /спосіб заміни площин проекцій/ з наступним суміщенням її з основною площиною, що зводить креслення до комплексного. Нові проекції прямих разом з проекціями а числовими відмітками дозволяють встановити взаємне розміщення прямих за ознаками, які розглядаються у розділі ортогональних проекцій.

Способом профіля на рис. 2.15 виявлено, що задані прямі AВ та CD паралельні: А5В1 \\ С1D3 та АВ \\ СD ; на рис. 2.І6.прямі перетинаються: точка К - точка перетину; на рис. 2.17, 2.18 прямі AB та CD мимобіжні /на рис. 2.13 через задані прямі проведені дві вертикальні площини π1 та π2 /.

Взаємне положення прямих на плані можна визначати, якщо проградуювати прямі і порівняти інтервали, нахили, напрями збільшення або зменшення числових відміток точок прямої і числові відмітки точок перетику прямих на плані. Цей спосіб визначення взаємного положення прямих тільки за їх проекціями на плані для методу проекцій з числовими відмітками більш зручний. Розглянемо його для різних випадків взаємного положення прямих і відзначимо ознаки, характерні для цих випадків.

Ознаки паралельності двох прямих в проекціях з числовими відмітками:

1/ взаємна паралельність проекцій прямих на основну площину;

2/ рівність інтервалів або ухилів, або кутів нахилу прямих до основної площини;

З/ числові відмітки точок прямих збільшуються або зменшуються в одному ї тому ж напрямку.

Тільки за однією або двома з трьох ознак паралельності прямих, зображених на плані не можна робити висновок про їх паралельність, оскільки відсутні інші проекції цих прямих, які визначають положення прямих.

На рис. 2.19 прямі AB та CD , зображені на плані, паралельні, тому що виконуються всі три ознаки паралельності прямих в проекціях з числовими відмітками:

1/ проекції прямих паралельні;

2/ інтервали рівні /попередньо прямі АВ та CD була проградуйовані/;

3/ числові відмітки точок прямих зростають в одному напрямку.

Відзначмо, що прямі, які сполучають точки з однаковими числовими відмітками паралельних прямих AВ та СD, будуть також паралельні /на рис. 2.19 ці прямі зображені суцільними тонкими лініями/, оскільки вони є горизонталями площини, яка проходить через задані паралельні прямі AВ та СD.

Паралельні прямі на плані часто задаються своїми горизонтальними проекціями з позначеною на них однією точкою з числовою відміткою, а також ухилом прямих і зазначенням напрямку спуска, які для двох прямих повинні бути однаковими. На рис. 2.20 задано дві паралельні прямі.

Якщо прямі перетинаються, то в проекціях з числовими відмітками:

1/ їх проекції також перетинаються;

2/ точка перетину проекцій двох прямих має однакові числові відмітки на двох прямих.

Додержання другої ознака паралельності двох прямих можна встановити таким чином. Прямі, що перетинаються, визначають положення тільки однієї площини, а горизонталі, які проведені в цій площині, паралельні. Тому спочатку проградуюємо задані прямі, а потім проведемо прямі, що з'єднують точки з однаковими числовими відмітками /горизонталі/. Якщо останні паралельні, то дві задані прямі лежать в одній площині, а отже, точка перетину їх горизонтальних проекцій на плані має однакову числову відмітку як на першій, так і на другій прямій.

На рис. 2.21 прямі AB та CD перетинаються оскільки:

1/мають спільну точку;

2/ горизонталі, проведені через точки прямих з однаковими відмітками /на рис. 2.21 показані суцільними тонкими лініями/ паралельні.

Точка перетину прямих AВ та CD має числову відмітку 5.

Якщо ознаки паралельності та перетину прямих не виконуються, то такі прямі мимобіжні. Точка перетину проекцій мимобіжних прямих буде мати різні відмітки на кожній з прямих, а прямі, які сполучають однакові числові відмітки /горизонталі/, не будуть паралельні, тому що горизонталі лежать не в одній, а в різних площинах.

На рис. 2.22 прямі AВ та CD мимобіжні, оскільки горизонталі які проведені через точки прямих з однаковими числовими відмітками непаралельні /горизонталі показані суцільними тонкими лініями/.

На плані часто доводиться проектувати дренажні мережі, різні трубопроводи: водопроводи, газопроводи, які часто перетинаються між собою під прямим кутом. Тому розглянемо ознаки взаємної перпендикулярності прямих на плані.

Оскільки взаємно перпендикулярні прямі - окремий випадок перетину прямих, то для них повинні бути характерними ознаки, властиві прямим, що перетинаються на плані. Крім цього, з розділу ортогональних проекцій відомо: якщо дві прямі взаємно перпендикулярні, в просторі, то проекції їх перпендакулярні одна до одної у тому випадку, коли хоча б одна з прямих горизонтальна. Отже, у взаємно перпендикулярних прямих, з яких хоча б одна горизонтальна, проекції на плані взаємно перпендикулярні.

На рис. 2.23 прямі n та AB взаємно перпендикулярні, оскільки:

1/ проекції прямих перетинаються;

2/ точка перетину прямих /точка А/ має однакову числову відмітку на одній та другій прямій, рівну 7;

3/ пряма n - горизонталь, а проекції прямих n та AB на плані взаємно перпендикулярні.

Якщо дві прямі взаємно перпендикулярні і знаходяться у вертикальній площині, то їх інтервали - величини, обернені одна до одної, а числові відмітки точок прямих зростають у різних напрямках.

На рис. 2.24 прямі AВ та ВC розташовані у спільній вертикальній площині і перпендикулярні одна до одної, оскільки інтервали їх дорівнюють lAB = 2м, lBC = 0,5 м, тобто інтервали -величини, обернені одна до одної, а числові відмітки зростають у протилежних напрямках.

У тому, що AВ ┴ BC, можна переконатись, побудувавши профіль прямих на вертикальну площину π, розташовану паралельно прямим /рис. 2.24/.

Взаємну перпендикулярність-прямих загального положення можна визначити проеціюванням на вертикальну площину, паралельну одній із заданих прямих. Якщо профілі прямих перпендикулярні, то і самі прямі взаємно перпендикулярні.


Розділ 3. Проекції площин

 


Информация о работе «Застосування нарисної геометрії у геодезії»
Раздел: Геология
Количество знаков с пробелами: 69915
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
32506
0
0

... . Відомо, що надра будь-якої держави, її мінерально-сировинні ресурси, являють собою основу промислового розвитку країни. Україна займає одне з провідних місць серед держав світу щодо кількості корисних копалин та їх різноманітності. Проблеми гірничодобувних галузей промисловості призвели до значного скорочення видобутку сировини, погіршенню умов праці гірників, скороченню фронту підготовчих роб ...

0 комментариев


Наверх