1. Теорема Чебышева
Теория вероятностей изучает закономерности массовых случайных явлений. Если явление носит единичный характер, то теория вероятностей не может предсказать исход события.
Иное дело, когда явление – массовое. Закономерности проявляются именно при большом числе случайных событий, происходящих в однородных условиях.
При большом числе испытаний характеристики случайных событий и случайных величин практически мало изменяются, т.е. становятся неслучайными. Это обстоятельство позволяет использовать результаты наблюдений над случайными явлениями для предсказания результатов будущих испытаний.
В дальнейшем мы ознакомимся с двумя типами предельных теорем: законом больших чисел и центральной предельной теоремой. Закон больших чисел играет очень важную роль в практическом применении теории вероятностей к явлениям природы и техническим процессам, связанных с массовым производством.
Для доказательства этих теорем воспользуемся неравенством Чебышева.
Пусть mxи Dx – математическое ожидание и дисперсия случайной величины Х.
Тогда неравенство Чебышева гласит: вероятность того, что отклонение случайной величины от ее математического ожидания будет по абсолютной величине не меньше любого положительного числа
, ограничена величиной
, т.е.
![]()
Доказательство. Пусть Х – непрерывная случайная величина с плотностью распределения вероятностей f(x). По определению
(1)
Выделим на числовой оси интервал АВ, состоящий из точек ![]()
А
В
х
![]()

Так как теперь ![]()
, то

Отсюда непосредственно и вытекает неравенство Чебышева.
Если Х – дискретная случайная величина, то доказательство неравенства Чебышева проводится по проделанной выше схеме с той лишь разницей, что вместо интеграла нужно записать сумму.
Так как
,
то неравенство Чебышева можно записать в другом виде
![]()
Если взять
, то получим, что неравенство Чебышева дает оценку
,
что заведомо выполняется, т.к. вероятность
С другой стороны, если взять
, то
,
т.е. дает неплохую оценку. Таким образом, мы видим, что неравенство Чебышева полезно лишь относительно (относительно sх) больших ![]()
Теорема Чебышева. При неограниченном увеличении числа независимых испытаний среднее арифметическое наблюдаемых значений случайной величины, имеющих конечную дисперсию, сходится по вероятности к ее математическому ожиданию.
Определение. Случайные величины
сходятся по вероятности к величине а, если для
, начиная с которого выполняется неравенство
или, по другому, если для любого малого ![]()
![]()
Итак, нужно доказать, что для любого малого ![]()

Доказательство. Введем случайную величину

Найдем числовые характеристики случайной величины Y, пользуясь их свойствами:


Теперь применим неравенство Чебышева к случайной величине Y:

Так как по условию Dx ограничена, то
![]()

Прежде чем сформулировать центральную предельную теорему введем характеристические функции.
... и докажу теорему Ляпунова только в частном случае, т.е. для последовательности независимых и одинаково распределенных случайных величин. Центральная предельная теорема. Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: . Обозначим через сумму первых случайных величин: . Тогда последовательность случайных величин слабо сходится к ...
... функциям, не выводят нас за пределы этого класса функций. Следующая теорема устанавливает сходный результат относительно уже не арифметической операции – предельного перехода. Теорема 2. Пусть на множестве Е задана последовательность измеримых функций f1(x), f2(x), … Если в каждой точке хЕ существует (конечный или бесконечный) предел F(x)=fn(x), то функция F(х) измерима. Д о к а з а т е л ь с ...
... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2. ...
... математической модели (распределения сумм пуассоновского числа нормально распределенных случайных величин). ЗАКЛЮЧЕНИЕ В данной курсовой работе рассмотрены основные методы прогнозирования экономической среды с учетом фактора старения информации на примере рыночного механизма спрос-предложение. Проанализировав полученную информацию, можно сделать выводы о том, что для различных наук, отраслей ...
0 комментариев