1.2 Понятие эконометрических уравнений
Например, если изучается модель спроса как соотношение цен и количества потребляемых товаров, то одновременно для прогнозирования спроса необходима модель предложения товаров, в которой рассматривается также взаимосвязь между количеством и ценой предлагаемых благ. Это позволяет достичь равновесия между спросом и предложением.
В еще большей степени возрастает потребность в использовании системы взаимосвязанных уравнений, если мы переходим от исследований на микроуровне к макроэкономическим расчетам. Модель национальной экономики включает в себя следующую систему уравнений: функции потребления, инвестиций заработной платы, тождество доходов и т.д. Это связано с тем, что макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы.
Так, расходы на конечное потребление в экономике зависят от валового национального дохода. Вместе с тем величина валового национального дохода рассматривается как функция инвестиций.
Система уравнений в эконометрических исследованиях может быть построена по-разному[4].
Возможна система независимых уравнений, когда каждая зависимая переменная y рассматривается как функция одного и того же набора факторов x: y1 = a11x1 + a12x2 +…+a1mxm+ e1, y2 = a21x1 + a22x2 +…+a2mxm+ e2 yn = an1x1 + an2x2 +…+anm xm+ en.
Набор факторов x1 в каждом уравнении может варьировать. Например, модель вида y1 = f (x1,x2, x3, x4, x5,);y2 = f (x1, x3, x4, x5,);y3 = f (x2, x3, x5,);y4 = f (x3, x4, x5,).
Также является системой независимых уравнений с тем лишь отличием, что набор факторов в ней видоизменяется в уравнениях, входящих в систему. Отсутствие того или иного фактора в уравнении системы может быть следствием как экономической нецелесообразности его включения в модель, так и несущественности его воздействия на результативный признак (незначимо значение t-критерия или F - критерия для данного фактора).
Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно. Для нахождения его параметров используется метод наименьших квадратов по существу, каждое уравнение этой системы является уравнением регрессии. Поскольку никогда нет уверенности, что факторы полностью объясняют зависимые переменные, в уравнениях присутствует свободный член a0. Так как фактические значения зависимой переменной отличаются от теоретических на величину случайной ошибки, в каждом уравнении присутствует величина случайной ошибки.
В итоге система независимых уравнений при трех зависимых переменных и четырех факторах имеет вид: y1 = a01 + a11x1 + a12 x2 + a13 x3 + a14 x4 + e1,y2 = a02 + a21x1 + a22 x2 + a23 x3 + a24 x4 + e2,y3 = a03 + a31x1 + a32 x2 + a33 x3 + a34 x4 + e3.
Однако если зависимая переменная у одного уравнения выступает в виде фактора х в другом уравнении, то исследователь может строить модель в виде системы рекурсивных уравнений[5]: y1 = a11x1 + a12 x2 + … + a1m xm + e1,y2 = b21y1 + a21x1 + a22 x2 + … + a2m xm + e2,y3 = b31y1 + b32y2 + a31x1 + a32 x2 + … + a3m xm + e3, yn = bn1y1 + bn2y2 + bnn-1yn-1 + an1x1 + an2 x2 + … + anm xm + en.
В данной системе зависимая переменная у включает в каждое последующее уравнение в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором собственно факторов х. Примером такой системы может служить модель производительности труда и фондоотдачи вида
y1 = a11x1 + a12 x2 + a13 x3 + e1,y2 = b21y1 + a21x1 + a22 x2 + a23 x3 + e2
где у1 - производительность труда;
у2 - фондоотдача;
х1 - фондовооружонность труда;
х2 - энерговооружонность труда;
х3 - квалификация рабочих.
Как и в предыдущей системе, каждое уравнение может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов.
Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других уравнениях - в правую часть системы: y1 = b12* y2 + b13* y3 +… + b1n * yn + a11 * x1 + a12 * x2 +…+ a1m xm + e1,y2 = b21* y1 + b23* y3 +… + b2n * yn + a21 * x1 + a22 * x2 +…+ a2m xm + e2, yn = bn1* y1 + bn2* y2 +… + bnn-1 * yn-1 + an1 * x1 + an2 * x2 +…+ anm xm + en.
Система взаимозависимых уравнений получила название система совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные у одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений называется также структурной формой модели. В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.
Примером системы одновременных уравнений может служить модель динамики цены и заработной платы вида y1 = b12y2 + a11x1 + e1, y2 = b21y1 + a22x2 + a23 x3 + e2,
где у1 - темп изменения месячной заработной платы ;у2 - темп изменения цен;х1 - процент безработных;х2 - темп изменения постоянного капитала;х3 - темп изменения цен на импорт сырья.
В рассмотренных классах систем эконометрических уравнений структура матрицы коэффициентов при зависимых переменных различна.
Представим систему эконометрических уравнений в матричном виде:
BY + ГX = E,
где В - матрица коэффициентов при зависимых переменных;
Y - вектор зависимых переменных;
Г - матрица параметров при объясняющих переменных;
Х - вектор объясняющих переменных;
Е - вектор ошибок.
Если матрица В диагональная, то рассматриваемая модель является системой независимых уравнений. Так, при трех зависимых и трех объясняющих переменных модель имеет вид: y1 = a01 + a11x1 + a12 x2 + a13 x3 + Е1,y2 = a02 + a21x1 + a22 x2 + a23 x3 + Е2,y3 = a03 + a31x1 + a32 x2 + a33 x3 + Е3.
Если матрица В треугольная (или может быть приведена к такому виду), то модель представляет собой систему рекурсивных уравнений. Так, если модель имеет вид: y1 = a01 + a11x1 + a12 x2 + Е1,y2 = a02 + b21y1 + a21 x1 + a23 x2 + Е2,y3 = a03 + b32y2 + a31 x1 + a32 x2 + Е2.
Т.е. зависимая переменная у1 первого уравнения участвует как объясняющая переменная во втором уравнении системы, а зависимая переменная у2 второго уравнения рассматривается как объясняющая переменная в третьем уравнении.
Если матрица В не является ни диагональной, ни треугольной, то модель представляет собой систему одновременных уравнений. Так, для модели вида y1 = a01 + b12y2 + a11x1 + a12 x2 +Е1,y2 = a02 + b21y1 + b23y3 + a23x3+ Е2,y3 = a03 + b31y1 + a32x2 + a33x3+Е3.
... Hо. №29. ОБЩАЯ ХАРАКТЕРИСТИКА МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. ИНТЕРПРИТАЦИЯ ПАРАМЕТРОВ МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. Величину L, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один ил более моментов времени, — лаговыми переменными. Эконометрическое моделирование осуществляется с ...
... нулю. В самом деле, для такой модели (сравните граф на риc.3б с рис.3а) будут справедливы следующие отношения: 2. Основная теорема путевого анализа Первым этапом путевого анализа является идентификация уравнений системы. В современной эконометрической литературе идентификация понимается как структурная спецификация модели, призванная не только определить значения параметров, но и выделить ...
... М.М. Анализ временных рядов и прогнозирование. М.: Финансы и статистика, 2001. 5. Джонстон Дж. Эконометрические методы. М.: Статистика, 1980. 6. Образцова О.Н., Назарова О.В., Канторович Г.Г. Экономическая статистика. Эконометрика. Методические материалы. – М.: ГУ – ВШЭ, 2000. 7. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2001. – 543 с. ...
... ). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины. Кратко рассмотрим в настоящей главе современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях. 1.3. ...
0 комментариев