1.3 Применение систем эконометрических уравнений
Применение систем эконометрических уравнений представляет собой непростую задачу.
Проблемы здесь происходят из-за ошибок спецификации. Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа. Более совершенными по сравнению со статическими моделями являются динамические модели экономики, которые содержат в правой части лаговые переменные и учитывают тенденцию развития (фактор времени). Значительные трудности создает невыполнение условия независимости факторов, которое в корне нарушается в системах одновременных (взаимозависимых) уравнений[6].
Использование корреляционно-регрессионного анализа в контексте структурного моделирования — это попытка подойти к выделению и измерению причинных связей переменных. Для этого следует сформулировать гипотезы о структуре влияний и корреляции. Такая система причинных гипотез и соответствующих взаимосвязей изображается графом, вершины которого — это переменные (причины или следствия), а дуги — причинные отношения. Верификация гипотез требует установления соответствия между графом и системой уравнений, описывающей этот граф.
Структурные модели эконометрики представляются системой линейных по отношению к наблюдаемым переменным уравнений. Если алгебраическая система соответствует графу без контуров (петель), то она является рекурсивной системой. Такая система позволяет рекуррентно определять значения входящих в нее переменных. В ней в уравнения для признака включаются все переменные, кроме тех, которые расположены выше него по графу. Соответственно формулировка гипотез в структуре рекуррентной модели довольно проста, при условии использования данных динамики. Рекурсивная система уравнений позволяет определить полные и частные коэффициенты влияния факторов. Коэффициенты полного влияния измеряют значение каждой переменной в структуре. Структурные модели позволяют оценить полное и непосредственное влияние переменных, прогнозировать поведение системы, рассчитывать значения эндогенных переменных.
Если нужно всего лишь уточнить характер связей переменных, то используют метод путевого анализа (путевых коэффициентов). В основе его лежит гипотеза об аддитивном характере (аддитивность и линейность) связей между переменными. К сожалению, применение путевого анализа в социально-экономических исследованиях затруднено тем, что не всегда линейная зависимость удовлетворительно выражает все разнообразие причинно-следственных связей в реальных системах. Значимость результатов анализа определяется правильностью построения максимально связного графа и, соответственно, изоморфной математической модели в виде системы уравнений. В то же время важным достоинством путевого анализа является возможность производить декомпозицию корреляций.
В данной главе мы рассмотрели сущность систем эконометрических уравнений, их применение. Таким образом, понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.
В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.
Применение систем эконометрических уравнений представляет собой непростую задачу.
Основной областью применения эконометрических моделей является построение макроэкономических моделей экономики целой страны. Это, главным образом, мультипликаторные модели кейнсианского типа.
Глава 2. Системы эконометрических уравнений
2.1 Система независимых уравнений
Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточно для описания таких систем и объяснения механизма функционирования. При использовании отдельных уравнений регрессии, в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменение во всей системе взаимосвязанных признаков. Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной.
Система независимых уравнений – система, в которой каждая зависимая переменная y рассматривается как функция одного и того же набора факторов x то есть система вида[7]: Y1=a11x1 + a12x2 +…+ a1mxm +ε1;
Y2=a21x1 + a22x2 +…+ a2mxm +ε2; Yn=an1x1 + an2x2 +…+ anmxm +εn.
Система рекурсивных уравнений – система, в которой зависимая переменная одного уравнения выступает в виде фактора x в другом уравнении, то есть система вида: Y1=a11x1 + a12x2 +…+ a1mxm +ε1; Y2= b21y1 +a21x1 + a22x2 +…+ a2mxm +ε2 ; Y3= b31y1 + b32y2+a31x1 + a32x2 +…+ a3mxm +ε2 ; Yn= bn1y1 + bn2y2 +…+ bnn-1yn-1 + an1x1 + an2x2 +…+ anmxm +εn.
Система взаимозависимых уравнений (система совместных одновременных уравнений) – система в которой одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других уравнениях – в правую, то есть система вида: Y1= b12y2 + b13y3 +…+ b1nyn + a11x1 + a12x2 +…+ a1mxm +ε1; Y2= b21y1 +b23y3 +…+ b2nyn + a21x1 + a22x2 +…+ a2mxm +ε2 ; Yn= bn1y1 + bn2y2 +…+ bnn-1yn-1 + an1x1 + an2x2 +…+ anmxm +εn.
Приведенная форма модели – система линейных функций эндогенных переменных от экзогенных:
Y1=δ11x1 +δ12x2 +…+ δ1mxm;
Y2=δ21x1 +δ 22x2 +…+ δ2mxm;
Yn=δn1x1 + δn2x2 +…+ δnmxm,
где δij – коэффициенты приведенной формы модели.
... Hо. №29. ОБЩАЯ ХАРАКТЕРИСТИКА МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. ИНТЕРПРИТАЦИЯ ПАРАМЕТРОВ МОДЕЛЕЙ С РАСПРЕДЕЛЕННЫМ ЛАГОМ. Величину L, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один ил более моментов времени, — лаговыми переменными. Эконометрическое моделирование осуществляется с ...
... нулю. В самом деле, для такой модели (сравните граф на риc.3б с рис.3а) будут справедливы следующие отношения: 2. Основная теорема путевого анализа Первым этапом путевого анализа является идентификация уравнений системы. В современной эконометрической литературе идентификация понимается как структурная спецификация модели, призванная не только определить значения параметров, но и выделить ...
... М.М. Анализ временных рядов и прогнозирование. М.: Финансы и статистика, 2001. 5. Джонстон Дж. Эконометрические методы. М.: Статистика, 1980. 6. Образцова О.Н., Назарова О.В., Канторович Г.Г. Экономическая статистика. Эконометрика. Методические материалы. – М.: ГУ – ВШЭ, 2000. 7. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2001. – 543 с. ...
... ). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины. Кратко рассмотрим в настоящей главе современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях. 1.3. ...
0 комментариев