Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Тульский государственный университет
Кафедра радиоэлектроники
Устройства функциональной электроники
Выполнила: Жуковская М.А.
гр. 151371
Проверил: Миронов М.М.
2011 г.
Содержание
Глава 1. Физико-химические основы зарождения и роста новой фазы
1. Анализ гомогенного и гетерогенного зарождения новой фазы
2. Влияние технологических факторов зарождения новой фазы на структуру пленок
3. Рост пленок. Эпитаксия
4. Химический рост эпитаксиальных пленок
Глава 2. Физико-химические основы поверхностных процессов
1. Термодинамика поверхностных процессов
2. Адсорбционные процессы на поверхности твердых тел
3. Факторы, влияющие на адгезию
4. Процессы очистки, промывки и пропитки поверхности
5. Электрофизические характеристики соприкасающихся поверхностей и границ раздела слоев
Глава 1. Физико-химические основы зарождения и роста новой фазы
1. Анализ гомогенного и гетерогенного зарождения новой фазы
Пленки металлов, диэлектриков и полупроводников, осажденные на различные поверхности, используют в электронной аппаратуре как функциональные элементы резисторов, конденсаторов, транзисторов, ИМС, ПП, а также различных приборов на акустических поверхностных волнах и магнитных доменах, с зарядовой связью и др. Кроме того, пленки применяют при изготовлении покрытий, обеспечивающих высокие потребительские (эстетические) качества РЭА.
Механизм процессов зарождения и роста пленок во многом определяет их кристаллическую структуру, а следовательно, и электрофизические, физико-химические, механические и эстетические свойства. Поскольку большинство ТП производства РЭА связано с осаждением или растворением пленок, необходимо рассмотреть физико-химические основы процессов зарождения и роста пленок новой фазы.
Пленки как элементы РЭА создаются на поверхности подложек при взаимодействии этих поверхностей с потоком частиц осаждаемых веществ. Результатом такого взаимодействия является появление новой фазы на поверхности подложки (пластины, детали, платы).
Потоки частиц могут иметь различный характер: молекулярные или ионные направленные пучки, потоки газовой и жидкой сред, движущиеся по законам газо- и гидродинамики, а также диффузионные потоки частиц. Процессы зарождения новой фазы могут протекать на границах различных фаз: жидкость — твердое тело, газ (пар) – твердое тело, твердое тело — твердое тело, композиционные пасты — твердое тело, жидкость — пар (газ).
Молекулярный пучок формируется, например, при испарении вещества. Этот пучок, достигая поверхности конденсации (подложки), имеющей температуру значительно ниже температуры испарения, конденсируется на ней, образуя пленку. Если температура конденсации (подложки) ниже температуры плавления вещества, то сначала образуются зародыши твердой фазы, а затем и сама твердая пленка. Если температура конденсации близка к температуре плавления вещества или выше ее, то формируется жидкая пленка. Однако в любом случае исходным материалом для создания пленки является поток частиц (молекул или атомов) от испарителя к подложке. Энергия этих частиц практически равна энергии испарения вещества.
В настоящее время существуют две теории гетерогенного образования зародышей конденсированной фазы: термодинамическая (макроскопическая) Гиббса — Фольмера и кинетическая (микроскопическая) Френкеля — Родина. Первая исходит из условий термодинамического равновесия в системе пар (газ) — зародыш — подложка, В ней используются такие термодинамические понятия, Как свободная и Поверхностная энергии, степень перенасыщения и др. Такой подход оправдан при небольших перенасыщениях пара, когда критический зародыш состоит из большого числа атомов, а следовательно, к нему применимы термодинамические законы. Однако во многих реальных процессах, когда степень перенасыщения велика (108—1040), критический зародыш оказывается состоящим из одного атома. Описывать термодинамическими уравнениями столь малые агрегаты нельзя. В таком случае возможен лишь кинетический подход. Поэтому далее рассмотрены обе теории гетерогенного образования зародышей.
Если поток частиц J формируется за счет образования ионной плазмы при катодном или другом каком-либо способе распыления, то этот поток имеет сложный состав (включая нейтральные атомы, ионы и электроны в различных пропорциях). Так как энергии этих частиц могут отличаться друг от друга, то и характер их взаимодействия с поверхностью подложки будет различным, что скажется на механизме зарождения и роста пленок.
При химическом осаждении пленок (например, из газовой фазы) характер взаимодействия частиц с поверхностью еще более усложняется. Процесс протекает в несколько стадий:
1) адсорбция взаимодействующих молекул на этой поверхности;
2) диффузия молекул;
3) химическая реакция исходных компонентов с появлением молекул осаждаемого вещества;
4) адсорбция этих молекул и выделение их в отдельную фазу на поверхности;
5) десорбция летучих продуктов реакции. Аналогичная картина наблюдается и при электрохимическом осаждении пленок из электролитов.
При рассмотрении механизма зарождения и роста пленок будем исходить из двух предпосылок: наличия потока J вещества, направленного к поверхности осаждения, и теоретически чистой поверхности.
Процесс образования зародышей заключается в возникновении и росте агрегатов молекул в результате последовательных бимолекулярных реакций по схеме
где
- агрегаты состоящие из i молекул (атомов),
Агрегат, содержащий i=iкр молекул, рассматривается как зародыш критического размера, который в общем случае растет или уменьшается. Другие механизмы образования зародышей (например, одновременного столкновения iкр молекул или нескольких агрегатов размерами меньше критического) считаются вероятными только для потока, имеющего высокую плотность (например, для импульсных процессов испарения).
Образование сферического зародыша новой фазы, содержащего iкр молекул, сопровождается некоторым изменением свободной энергии ДGi, связанным с появлением определенной поверхности Sп и объема новой фазы V. В отсутствие полей и зарядов этот процесс можно описать уравнениями:
где r — радиус сферического зародыша, уS — поверхностная энергия, ДGV — изменение свободной энергии при конденсации, практически равное энергии испарения, рпер— давление перенасыщенного пара, рравн — равновесное давление пара, соответствующее температуре конденсации Т; N ↓ и N ↑— число молекул, движущихся к поверхности конденсации и испаряющихся с нее.
Следовательно, уравнение (3.2) можно представить в виде
Зависимость ДGi = f(r) для различных температур поверхности конденсации показана на рис. 3.1. Как видно из рисунка, свободная энергия ДGi растет с увеличением r до значения , а затем быстро убывает. Агрегаты радиусом r < rкр считаются нестабильными, а радиусом r > rкр — стабильными зародышами новой фазы. Последним соответствует уменьшение свободной энергии.
Определив максимум функции (3.5) из условия , найдем радиус rкр:
Подставив значение rкр в (3.5),
Соотношения (3.6) и (3.7) были впервые получены Дж. У. Гиббсом.
Для различных веществ rкр =1ч50 нм.
Разделив объем критического зародыша на молекулярный Vm, получим число молекул
Из рис. 3.1 видно, что уравнение (3.5) справедливо в диапазоне температур от Т1 до Т4. Вне этого диапазона теорию Гиббса — Фольмера использовать нельзя.
Скорость образования зародыша
где Sп.кр—площадь поверхности критического зародыша; щ — частота столкновений молекул с этой поверхностью; ni — число молекул на единице этой поверхности, т. е. равновесная поверхностная концентрация молекул.
По изотерме Вант-Гоффа
где n∑ — число молекул в паре.
Согласно уравнению Герца — Кнудсена частота столкновений
где ак — коэффициент конденсации; ри рк — давления насыщенных паров при температурах испарения и конденсации (т. е. испарителя и подложки). Следовательно, скорость образования зародышей
Уравнение (3.12) не учитывает ряда факторов. Например, не всякое столкновение молекулы с агрегатом ведет к ее конденсации и внедрению в агрегат. Поэтому выражение (3.12) следует умножить на равновесный фактор Z, учитывающий, какая доля из ударяющихся о поверхность молекул конденсируется. Обычно
Таким образом,
Все выкладки относятся к гомогенному образованию зародышей, которое редко реализуется на практике.
Модель гетерогенного образования зародышей отличается от гомогенной тем, что вводится геометрический фактор, определяемый межфазовыми взаимодействиями в системе подложка — зародыш— пар или подложка — зародыш — жидкость. Если свойства зародыша изотропны, то образуется куполообразный зародыш, если анизотропны —другие конфигурации зародышей (рис. 3.2).
Геометрический фактор вводится в уравнение (3.5) в виде функций поверхности соприкосновения зародыша с соответствующими фазами и объема зародыша fs(ц) и fv (ц), зависящих от контактного угла ц (для жидкостей — угла смачивания):
Эти функции описывают геометрическую конфигурацию зародыша. Значение ц определяется при равновесии поверхностных энергий:
Где упл-пар, ук-пр, ук-пар —удельные межфазовые поверхностные энергии поверхностей раздела пластина — пар, конденсат — пластина и конденсат —пар.
Для куполообразного зародыша
где fsпл (ц)—функция поверхности соприкосновения зародыша с пластиной; fsпар (ц) —функция поверхности соприкосновения зародыша с паровой фазой.
Свободную энергию образования критического зародыша найдем из условия максимума уравнения (3.15):
Где
функция контактного угла f(ц) для куполообразного зародыша (рис. 3.3) характеризует взаимодействие конденсата с пластиной. При ц→0 f (ц)→0, ДGкр→0 и образование зародышей облегчается. При ц→1800 f (ц)→1, ДGкр растет до максимума и образование зародышей затрудняется (случай гомогенного зарождения новой фазы). Следовательно, уравнение (3.2) является предельным случаем образования зародышей, когда оно протекает с максимальной трудностью. Таким образом, свободная энергия гетерогенного меньше свободной энергии гомогенного образования зародышей. Кроме того, механизм гомогенного и гетерогенного образования зародышей (рис. 3.4) различен. При гомогенном образовании рост происходит только за счет реакции поверхности зародыша с паровой фазой (механизм х3), при гетерогенном — за счет поверхностной диффузии (механизм х2), т. е. х2>>х3. При очень низких температурах пластины х3>х2.
Скорость гомогенного образования зародышей в случае прямого осаждения из пара
где nадс — концентрация молекул, адсорбированных на поверхности; ДGк.п — свободная энергия конденсации из пара.
Скорость образования зародышей при преобладании поверхностной диффузии
где а — длина скачка диффундирующей молекулы к поверхности зародыша; j — величина, обратная числу возможных направлений скачков; v —частота поверхностных колебаний; ДGп.д — свободная энергия активации поверхностной диффузии; частота скачков диффундирующей молекулы.
При температурах пластины, позволяющих реализовать оба механизма образования зародышей, скорость образования зародышей равна сумме скоростей х2 и х3:
Для обычных условий осаждения пленок уравнение (3.22) удобно представить в виде
где К — константа, учитывающая размер критического зародыша и другие геометрические параметры; N —общее число частиц, участвующих в процессе образования зародышей.
Как видно из выражения (3.23), скорость образования зародышей существенно зависит от энергетических характеристик процесса, а следовательно, от условий осаждения. На рис. 3.5 показана логарифмическая зависимость скорости образования зародышей от скорости конденсации, характеризуемой степенью перенасыщения N↓/N↑.
Рост критических (докритических) зародышей за счет поверхностной диффузии возможен только в случае, когда температура пластины достаточно высока (kT>>ДGп.д). При низких температурах диффузия атомов по поверхности мала и адсорбированные атомы можно считать локализованными. В этом случае рост зародыша происходит за счет прямого добавления атомов из пара (механизм х3). Скорость образования зародышей определяют по (3.20).
... равномерной по глубине, поверхностная концентрация носителей уменьшается и ФМЭ убывает согласно формуле: (10) 3. Оценка перспектив использования фотоэлектромагнитного эффекта в устройствах функциональной электроники Современная твердотельная электроника, являясь основным средством обработки информации, развивается по двум главным направлениям: интегральной электроники, ...
... ]/[В]. 5. Температурный коэффициент сопротивления – показатель температурной стабильности. Показывает относительное изменение сопротивления при изменении температуры на один градус. aR= DR/ Dt *1/R0 6. Функциональная характеристика (кривая регулирования) – зависимость сопротивления от угла поворота. А – линейная зависимость; Б – логарифмическая; В – показательная; Схема ...
. Когерентная ОЭ базируется на использовании лазерного излучения. К некогерентной ОЭ относят дискретные и матричные некогерентные излучатели и построенные на их основе цифровые индикаторные устройства визуального представления информации, шкалы, табло, экраны, а также фото приемные устройства, оптопары, оптронные интегральные микросхемы (ИМС) и др. 2. НЕКОГЕРЕНТНЫЕ ИЗЛУЧАТЕЛИ 2.1. ...
... . Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники. Отклонения от заданной кривой определяются допусками. Для резисторов общего применения ...
0 комментариев