3. Рост пленок. Эпитаксия

В радиоэлектронике используются пленки, реальная толщина которых во многих случаях больше, чем высота купола критических и сверхкритических зародышей. Поэтому необходимо рассмотреть не только образование, но и развитие (рост) пленки после того, как она стала сплошной, т. е. после исчезновения островковой структуры. При этом следует определить:

1) степень влияния механизма образования зародышей на дальнейшую структуру пленки, а также на возникновение границ зерен, дефектов структуры: упаковки, двойниковых структур, вакансий, дислокаций и др.;

2) зависимость изменения или повторения образовавшейся структуры от механизма роста пленок и различных параметров состояния;

3) способы влияния на изменение структуры пленки с целью улучшения ее электрофизических свойств.

Осаждение монокристаллических пленок на монокристаллические пластины называют эпитаксией. В понимании механизма роста пленок эпитаксия играет большую роль.

Эпитаксиальная пленка когерентна со структурой пластины, т. с. повторяет эту структуру. Такая пленка может «наследовать» или «залечивать» дефекты пластины в зависимости от условий осаждения и ее обработки.

После того как получен первый сплошной слой пленки, следующий слой формируется независимо от структуры пластины. Рост отдельного агрегата на атомарном уровне может быть как эпитаксиальным, так и неэпитаксиальным. Для анализа механизма роста пленки воспользуемся моделью образования куполообразного зародыша, описанной в п.1.

Согласно уравнению (3.18) свободная энергия образования критического зародыша

При осаждении пленки на предыдущий слой того же материала можно принять ц = 0. Тогда f(ц) =0 и ДGкр = 0. Следовательно, энергетический барьер отсутствует. Поэтому конденсирующиеся атомы на поверхности пленки непосредственно встраиваются в структуру растущего слоя. В этом случае классическая модель образования зародышей макроскопических размеров не применима к образованию микроскопических (например, двухатомных или трехатомных) агрегатов. После возникновения на пластине сплошной пленки ее рост следует рассматривать с позиций роста кристаллов. Поверхность кристалла никогда не бывает идеально гладкой. На ней всегда имеются различные выступы, ямки, островки и другие неоднородности структуры (рис. 3.7). Механизм роста пленки включает в себя адсорбцию атомов из паровой фазы (преимущественно на гранях кристалла), поверхностную диффузию к ступеньке, взаимодействие со ступенькой, диффузию вдоль ступеньки и достраивание ступеньки. В зависимости от того, какое положение занимает адсорбированный атом на поверхности кристалла, число атомов, окружающих его, различно. Поэтому различна и энергия связи его с поверхностью кристалла, а следовательно, и энергия активации поверхностной диффузии.

Условия равновесия, которые существуют между различными положениями атомов (рис. 3.7), таковы:

где пi1, пi2, пi3, пi4 — равновесные концентрации атомов соответствующего типа; рМе—давление пара осаждаемого компонента; х1, х2,…, х10 — скорости движения атомов.

Скорости х5— х10 , влияющие на рост пленки, можно найти следующим образом:

где b - длина ступеньки на единицу площади; v≈1013 с-1 —частота колебаний атомов, находящихся на поверхности пленки; ДG1→5, ДG5→1 — свободные энергии диффузии атомов при переходе из положения 1 в положение 5 и обратно; Рн — вероятность данного направления движения атомов при их миграции по поверхности пленки (для плотно упакованных кристаллов Рн=1/6); Ко, Ki— число позиций атомов на единичной поверхности и длине ступеньки.

Таким образом, анализ роста пленки сводится к выявлению преобладающей стадии роста в тех или иных задаваемых условиях. Для случая, когда преобладает скорость поверхностной диффузии х6, а скоростью диффузии вдоль ступеньки х4 можно пренебречь, уравнение диффузии для адсорбированных атомов примет вид

Где DS — коэффициент поверхностной диффузии; х — координата движения частицы.

Выражение (3.30) является кинетическим уравнением роста пленок.

Анализ роста монокристаллических (эпитаксиальных) пленок позволяет выявить кроме первичных дефектов структуры, вызванных условиями зарождения, и вторичные дефекты, появляющиеся в процессе роста,— дислокационные петли, дефекты упаковки и точечные дефекты. Часто встречающимися дефектами в пленках являются дислокации. Концентрация дефектов условно характеризуется плотностьюдислокации, измеряемой их числом на 1 см2. Эта величина в эпитаксиальных пленках металлов достигает нередко значений 1010—1011 см-2. В полупроводниковых эпитаксиальных пленках, используемых в производстве ИМС, плотность дислокаций составляет 10—104 см-2.

Причины появления дислокаций различны. Пленки формируются в процессе осаждения. Ранее осажденные слои могут покрываться последующими до того, как будет достигнуто термическое равновесие с предыдущим слоем. При этом в слой может попадать большое число вакансий. Процесс усугубляется, если температура пластин низкая. В этом случае тепловой энергии (конденсации) может не хватить для того, чтобы обеспечить миграцию атомов по поверхности. Поэтому атомы будут оставаться в тех местах, куда они попали при соударении с поверхностью. Поскольку их распределение носит случайный характер, они будут вносить разупорядоченность в структуру осаждаемой пленки. Степень разупорядоченности зависит от наличия примесей в пленке и на ее поверхности, а также от неоднородных поверхностных свойств предыдущего слоя, низкой температуры конденсации и т. п.


Информация о работе «Устройства функциональной электроники»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 55284
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
17481
1
0

... равномерной по глубине, поверхностная концентрация носителей уменьшается и ФМЭ убывает согласно формуле: (10)  3. Оценка перспектив использования фотоэлектромагнитного эффекта в устройствах функциональной электроники Современная твердотельная электроника, являясь основным средством обработки информации, развивается по двум главным направлениям: интегральной электроники, ...

Скачать
58052
7
0

... ]/[В]. 5.   Температурный коэффициент сопротивления – показатель температурной стабильности. Показывает относительное изменение сопротивления при изменении температуры на один градус. aR= DR/ Dt *1/R0   6.   Функциональная характеристика (кривая регулирования) – зависимость сопротивления от угла поворота. А – линейная зависимость; Б – логарифмическая; В – показательная;   Схема ...

Скачать
25392
1
4

. Когерентная ОЭ базируется на использовании лазерного излучения. К некогерентной ОЭ относят дискретные и матричные некогерентные излучатели и построенные на их основе цифровые индикаторные устройства визуального представления информации, шкалы, табло, экраны, а также фото приемные устройства, оптопары, оптронные интегральные микросхемы (ИМС) и др. 2. НЕКОГЕРЕНТНЫЕ ИЗЛУЧАТЕЛИ 2.1. ...

Скачать
29358
0
0

... . Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники. Отклонения от заданной кривой определяются допусками. Для резисторов общего применения ...

0 комментариев


Наверх