4. Химический рост эпитаксиальных пленок

В предыдущих параграфах были рассмотрены процессы образования и роста пленок при испарении и конденсации согласно термодинамической теории Гиббса — Фольмера, справедливой для степени перенасыщения, не превышающей 108. При испарении тугоплавких металлов (W, Mo, Re, V) степень перенасыщения достигает значений 1030—1040; размеры критических зародышей, рассчитанные по уравнению (3.6), соответствуют размерам одного атома и меньше, что противоречит физическому смыслу. Аналогичная ситуация возникает и при осаждении слоев химическими способами из газовой фазы, где степень перенасыщения составляет 1020—1040. В этом случае единственно приемлемой теорией для анализа роста пленок является кинетическая теория Френкеля — Родина.

Пока не существует достаточно разработанной теории образования и роста эпитаксиальных слоев. Излагаемая теория Френкеля— Родина устанавливает лишь ряд важных закономерностей, часто подтверждаемых экспериментально.

В1924 г. советский ученый Я. И. Френкель ввел понятие двумерного пара (газа). В соответствии с этим понятием атомы, попавшие на поверхность твердого тела из объема паровой или газовой фазы, адсорбируются этой поверхностью и удерживаются на ней в течение времени:

где ф0 = 10-13 с —время, соответствующее дебаевской частоте; ДGадс — свободная энергия адсорбции атома; Т — температура поверхности.

Частицы двумерного пара, мигрируя по поверхности, сталкиваются друг с другом, образуя агрегаты из двух, трех и т. д. атомов. Простейшим агрегатом является двойник (i = 2), показанный на рис. 3.8, a, с энергией межатомной связи Е11 и энергией связи с поверхностью 2E12. Поскольку двухатомные агрегаты вдвое сильнее связаны с поверхностью, чем одиночные атомы, они и менее подвижны. Для испарения двойника нужна энергия 2E12, а одного атома Е12. При осаждении металлов и полупроводников на диэлектрические пластины Е1112; процесс испарения двойника менее вероятен, чем одного атома, что соответствует образованию зародыша конденсированной фазы. При увеличении агрегата (i = 3, 4,..., п) вероятность образования зародышей увеличивается.

При очень большом перенасыщении газовой фазы критический зародыш может состоять из одного атома. Поэтому, когда возникает агрегат из двух атомов, более вероятно, что он будет расти, а. не распадаться. Снижение перенасыщения приводит к тому, что вероятность присоединения к одному атому другого становится равна вероятности распада агрегата. В таком случае стабильными станут конфигурации с двумя связями на атом. При дальнейшем, снижении перенасыщения стабильными становятся агрегаты из трех, четырех и т. д. атомов (рис. 3.8, а—г). Стабильными образованиями являются треугольник и квадрат. В первом случае зародыш имеет ориентацию <111>, во втором — <100>. Таким образом, степень перенасыщения должна сказываться на ориентации стабильных зародышей.

Зависимость скорости хK образования зародышей (конденсации) из потока I частиц, попадающих на пластину, от температуры пластины Т может быть описана следующими уравнениями:

где падс — число единичных адсорбированных атомов; v — частота колебания адсорбированного атома; ДGi, ДGi+1 — свободные энергии образования зародыша в результате межатомного взаимодействия (аналог ДGк.п при эпитаксии).

Поскольку i невелико, можно методом проб и ошибок установить, какое значение i (1, 2, 3,...) отвечает экспериментальным данным.

Процессы образования эпитаксиальных слоев во многом определяют характер их роста и, следовательно, степень кристаллического совершенства полученной структуры. При значительной разориентации отдельных зародышей слой будет иметь большое число дефектов и может стать неприемлемым для изготовления ИМС.

Наибольшее распространение в промышленной практике получили процессы эпитаксии полупроводников из газовой фазы с помощью химических реакций.

Развитие методов эпитаксии, особенно гетероэпитаксии (выращивания пленки одного материала на подложке другого), позволяет получать приборы с такими высокими электрическими характеристиками, которые трудно реализовать другими технологическими методами.


 

Глава 2. Физико-химические основы поверхностных процессов

1. Термодинамика поверхностных процессов

Свойства поверхности раздела отдельных слоев структуры или конструкции функциональных узлов, состоящих из металлов, диэлектриков, полупроводников, композиционных материалов, важны при формировании практически всех элементов и компонентов РЭА. Они зависят от сложных комплексных характеристик поверхностей раздела на атомарном и субатомарном уровнях, а также взаимодействия этих поверхностей с полями (электрическими, электромагнитными) и излучениями (электромагнитными, оптическими, атомными и субатомными). Изменение характеристик поверхности раздела под действием внешних и внутренних факторов приводит к необратимым изменениям параметров качества изделий РЭА. Характеристики поверхностных и приповерхностных слоев влияют на все эксплуатационные параметры РЭА.

Знания физико-химических свойств поверхностей твердых тел хотя и расширились в последнее десятилетие, однако еще недостаточны для установления количественных взаимосвязей параметров качества изделий и технологических факторов. Эти взаимосвязи важны для выбора оптимальных технологических решений при обработке, эксплуатации и сохранения свойств поверхностных и приповерхностных слоев в РЭА.

Любое технологическое воздействие среды на материал или изделие, как правило, начинается с взаимодействия частиц этой среды с поверхностью материала (изделия). Для большинства ТП производства РЭА необходимо знать механизм такого взаимодействия не только при формировании (зарождении, росте, травлении), но и при эксплуатации слоев. Это требует от технологов тщательного изучения явлений и процессов, которые могут протекать на поверхности при различных условиях (технологических факторах).

Термодинамика поверхностных явлений рассматривает состояния поверхностных атомов, отличающихся от состояния атомов, расположенных во внутренних слоях вещества. Причиной этого различия является неодинаковое взаимодействие атомов твердого тела с окружающими частицами. Поэтому свойства поверхностного слоя вещества отличаются от свойств его внутренних слоев. Следовательно, необходимо различать поверхностные и объемные свойства вещества. Чем больше отношение площади поверхности твердого тела к его объему, тем сильнее сказывается влияние поверхностных свойств на общие. Поверхностные свойства веществ проявляются на любой поверхности раздела фаз: твердое тело — газ, твердое тело — твердое тело, жидкость — пар, жидкость — жидкость.

Термодинамические параметры поверхности определяются природой материала и его физическим состоянием, которое характеризуется полной поверхностной энергией. Часть этой энергии, равная максимальной полезной работе, затрачиваемой на создание поверхности, является удельной поверхностной энергией Гиббса и называется поверхностным натяжением уS.

Значения поверхностного натяжения для жидких материалов определить экспериментально легко (представлены в справочниках), а для твердых — трудно.

Для большинства расчетов уS для твердых тел принимаются на 5—8% больше этих же значений для жидких.

Идеальная (чистая) поверхность встречается редко. На практике приходится иметь дело с реальной поверхностью, т. е. поверхностью твердого тела, покрытой пленкой (толщиной 100—1000 нм) оксидов, гидратов, жиров и других веществ, которая к тому же не является атомно гладкой, В микроэлектронных изделиях большинство эксплуатационных свойств реализуется в приповерхностных слоях. Состояние поверхности влияет на электрофизические параметры приповерхностных слоев, вызывая адсорбцию заряженных частиц, появление рекомбинационных центров и других дефектов. Часто надежная работа радиоэлектронного устройства зависит от того, насколько хорошо подготовлена (обработана) и насколько надежно защищена его поверхность от вредных внешних воздействий. Для того чтобы понять физико-химические свойства поверхности, рассмотрим основные термодинамические и физические аспекты поверхностных явлений.

Поверхностное натяжение уS влияет на значение суммарной свободной энергии системы ДG только в том случае, когда оно соизмеримо с другими составляющими уравнения. При термодинамическом анализе поверхностных явлений определяются значимость уS в уравнении, возможности ее нахождения, зависимость уS от таких параметров состояния, как температура, давление, концентрация компонентов системы, или от технологических факторов (чистоты, шероховатости поверхности и т. п.).

При повышении температуры происходит расширение тел и ослабление сил взаимного притяжения как в толще, так и на поверхности материала. Это приводит к тому, что поверхностное натяжение уменьшается с увеличением температуры материала. Зависимость поверхностного натяжения от температуры в большинстве случаев линейна.

В этих условиях поверхности раздела фаз не существует. В конденсированном состоянии (жидком или твердом) вещество не может находиться выше температуры Ткр. Такую температуру называют критической. На практике часто пользуются этим параметром, например, для полного удаления влаги из какого-либо технологического агрегата или с поверхности изделий производят их термическую обработку при температуре, близкой к критической температуре воды (475°С). В большинстве случаев достаточной является температура 300°С, особенно если сушка проводится в вакууме.

При постоянных температуре и давлении самопроизвольно протекают такие процессы, для которых характерно уменьшение свободной энергии, т. е. ДGS<0 или ДG3= уS ДSп<0. Если уS =const, то ДSп<0, т. е. протекающие процессы сопровождаются уменьшением площади поверхности. Таким образом, система самопроизвольно стремится к уменьшению поверхности раздела фаз.

Для жидкости поверхностное натяжение уS минимально при шарообразной форме. Для кристаллических тел наименьшее значение ДGS достигается при определенных соотношениях размеров граней кристалла, поскольку поверхностные энергии различных граней различны. Конфигурация кристалла, которой соответствует минимум ДGS, наиболее устойчива (принцип Гиббса — Кюри).

Важным выводом термодинамического анализа поверхностных процессов является то, что при увеличении площади поверхности, т. е. при повышении дисперсности (степени измельчения) вещества, его пористости, разрыхленное™ внутренней структуры и степени ее упорядоченности, изменяются физико-химические и эксплуатационные свойства материалов, а следовательно, и изделий, изготовленных из них. Например, у мелкодисперсных материалов увеличивается способность к переходу из одной фазы в другую при любом процессе (увеличиваются летучесть, растворимость, химическая активность и т. п.). Материал более активен в аморфном состоянии, чем в кристаллическом; в поликристаллическом, чем в монокристаллическом. На практике это свойство материалов используется широко, например, для эмульсий галогенидов серебра, применяемых в фотолитографии, степень дисперсности определяет светочувствительность материала; при создании изделий из композиционных паст энергия сцепления частиц в значительной мере зависит от степени их дисперсности и т. п.

При взаимодействии поверхностей твердой и жидкой фаз наблюдается явление, называемое смачиванием. Степень смачивания характеризуется видом и степенью искривления поверхности жидкости в месте соприкосновения трех фаз: твердой, жидкой, паровой (газообразной). Такое искривление называют мениском.

Степень смачивания определяет форму капли жидкости на стенки сосуда твердой поверхности. Мерой смачивания обычно служит контактный угол (угол смачивания) ср между смачиваемой поверхностью и поверхностью жидкости по периметру смачивания (рис. 4.1, а).

Если соприкасаются две поверхности твердого тела, т. е. судить о смачивании невозможно, то вводится аналогичное смачиванию понятие адгезии как явления и меры взаимодействия двух (более) поверхностей твердых тел. Адгезия измеряется силой отрыва одной поверхности от другой.

Смачивание, адгезия и капиллярные явления играют существенную роль при промывке и сушке изделий и полуфабрикатов (замедляют движение жидкостей и газов из пор и трещин), а также в пропитке, осаждении слоев, лужении, пайке и сварке изделий. Кроме того, эти явления могут влиять на эксплуатационную надежность таких многослойных тонкопленочных изделий, как интегральные микроэлектронные устройства.


Информация о работе «Устройства функциональной электроники»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 55284
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
17481
1
0

... равномерной по глубине, поверхностная концентрация носителей уменьшается и ФМЭ убывает согласно формуле: (10)  3. Оценка перспектив использования фотоэлектромагнитного эффекта в устройствах функциональной электроники Современная твердотельная электроника, являясь основным средством обработки информации, развивается по двум главным направлениям: интегральной электроники, ...

Скачать
58052
7
0

... ]/[В]. 5.   Температурный коэффициент сопротивления – показатель температурной стабильности. Показывает относительное изменение сопротивления при изменении температуры на один градус. aR= DR/ Dt *1/R0   6.   Функциональная характеристика (кривая регулирования) – зависимость сопротивления от угла поворота. А – линейная зависимость; Б – логарифмическая; В – показательная;   Схема ...

Скачать
25392
1
4

. Когерентная ОЭ базируется на использовании лазерного излучения. К некогерентной ОЭ относят дискретные и матричные некогерентные излучатели и построенные на их основе цифровые индикаторные устройства визуального представления информации, шкалы, табло, экраны, а также фото приемные устройства, оптопары, оптронные интегральные микросхемы (ИМС) и др. 2. НЕКОГЕРЕНТНЫЕ ИЗЛУЧАТЕЛИ 2.1. ...

Скачать
29358
0
0

... . Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники. Отклонения от заданной кривой определяются допусками. Для резисторов общего применения ...

0 комментариев


Наверх