1.24. Закончить намеченное решение.
Второе решение. Положим в первый и второй ящики карточки с 0, в третий и четвертый - карточки с 1, ... , в девятнадцатый и двадцатый - карточки с 9. На этот раз выполнено условие b). Разрешим менять местами любые две карточки. При таком перемещении расстояние между восемью парами «одноименных» карточек не меняется, между двумя - меняется; таким образом, сумма всех этих расстояний...
Полная система инвариантов
Иногда вместо универсального инварианта проще найти и использовать полную систему инвариантов. Система инвариантов <f1, f2, f3> называется полной, если равенства,
f1(a) = f1(p),
f2(a) = f2(p), (5)
fk(a) = fk(p).
имеют место одновременно тогда и только тогда, когда позиции a и p эквивалентны.
В чем суть этого определения? Если позиции a и p эквивалентны, то, поскольку f1, f2,…, fk - инварианты, каждое из равенств системы (5) все равно выполняется. «В эту сторону» полнота еще ни при чем. Если бы инварианты f1, f2,…, fk были универсальными, то эквивалентность позиций пир вытекала бы из любого равенства системы (5). Нам не дана их универсальность, но зато требуется, чтобы одновременное выполнение равенств системы (5) влекло эквивалентность позиций a и p . Именно в этом суть понятия полноты. Таким образом, хотя некоторые из инвариантов f1, f2,…, fk могут на неэквивалентных позициях a и p принимать одинаковое значение , значение набора
< f1, f2,…, fk > на них различны.
Полная система инвариантов — это обобщение понятия универсального инварианта: если f - универсальный инвариант, то система <f>, состоящая из одного инварианта, конечно, полна.
Задача 3. В таблице 2х2 записываются целые числа. Разрешается, во-первых, в любом столбце одновременно: к одному числу прибавить 2, из другого — вычесть 2 и, во-вторых, в любой строке одновременно: к одному числу прибавить 3, из другого — вычесть 3. Какие таблицы эквивалентны?
Рассмотрим три функции: для любой таблицыa= a b
c d
обозначим через g(a) сумму а + b + с + d, через q (a) - остаток от деления числа а + b на 2 и через r (а) — остаток от деления числа а + с на 3. Функции g, q, r являются инвариантами. Не очень трудно доказать, что произвольная таблица a эквивалентна таблице
0 q(a)
r(a) g(a)—q(a)—r(a)
Следовательно, из равенств
g(a) = g(p),
q(a) = q(p),
r(a) = r(p).
вытекает что таблицы a и р эквивалентны одной и той же таблице и, значит, эквивалентны между собой. И обратно: эквивалентность таблиц a и р влечет равенства (6), поскольку g, q и r—инварианты. Таким образом, <g, q, r> - полная система.
Задачи.
1.26. Решите задачу для таблиц n x n, в которых разрешаются те же преобразования, что и в задаче 3. Естественно ожидать полную систему из 2n- -1 инвариантов.
1.27. Если f1, f2, fk - инварианты и g — числовая функция от k аргументов, то функция h: h(a) = g(f1(a), f2(a),..., fk(a)) (7) является инвариантом (ср. с упражнением 2). Проверьте.
1.28.Если h — инвариант, a <f1, f2,…, fk> - полная система инвариантов, то существует такая числовая функция g от k аргументов, что выполняется (7) (ср. с упражнением 3). Докажите.
1.29. Множество М — множество точек числовой плоскости, то есть множество пар <х, у> действительных чисел. Единственный допустимый переход: <x, y>à <y, x>. Пусть
f1(x, y) = xy ,
f2(x, y) = x + y.
Доказать, что <f1, f2> - полная система инвариантов.
1.30. Множество М — множество точек пространства или множество троек <x, y, z> действительных чисел. Разрешены переходы
< x, y, z >à <y, x, z > и <x, y, z >à < x, z, y >. Пусть
f1( x, y, z ) = xyz,
f2 (x, y, z) = ху + уz + zх,
f3(x, y, z ) = х + у + z.
Доказать, что <f1, f2, f3> — полная система инвариантов.
1.31. Множество М состоит из всевозможных наборов (или кортежей) <х1, x2, x3, …, xn> действительных чисел (n фиксировано). Разрешается менять местами любые два соседних числа. Найти полную систему инвариантов.
В отличие от задач 1 — 3, которые были просто задачами олимпиадного типа, упражнения 11—13 играют важную роль в алгебре многочленов. Инварианты в них интересны не для решения вопроса об эквивалентности (который ясен и без них), а сами по себе — как полезные функции.
1.32.Даны розетка с п дырками и электронная лампа с n штырями. Дырки занумерованы от 1 до n (рис. 9). Можно ли занумеровать штыри от 1 до n так, чтобы при любом включении в розетку один из штырей попадал в дырку со своим номером?
1.33. Многие знают «игру в 15»: в коробочке 4x4 лежат 15 шашек с номерами от 1 до 15; разрешается за один ход передвинуть в пустую клетку одну из шашек, соседних с ней. Можно ли превратить положение a в положение p (рис. 10)? Найдите для этой игры универсальный инвариант.
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 | |
9 | 10 | 11 | 12 | 9 | 10 | 11 | 12 | |
13 | 14 | 15 | 13 | 15 | 14 |
а p
1.34. На клетчатой доске 11x11 отмечено 22 клетки так, что на каждой вертикали и на каждой горизонтали отмечено ровно 2 клетки. Два расположения отмеченных клеток эквивалентны, если, меняя любое число раз вертикали между собой и горизонтали между собой, мы из одного расположения можем получить другое. Сколько существует неэквивалентных расположении отмеченных клеток?
1.35. Испанский король решил перевесить по-своему портреты своих предшественников в круглой башне замка. Однако он хочет, чтобы за один раз меняли местами только два портрета, висящих рядом, причем это не должны быть портреты королей, один из которых царствовал сразу после другого. Кроме того, ему важно лишь взаимное расположение портретов, и два расположения, отличающиеся поворотом круга, он считает одинаковыми. Доказать, что, как бы сначала ни висели портреты, король может по этим правилам добиться любого нового их расположения.
1.36. Все целые числа от 1 до 2n выписаны в строчку. Затем к каждому числу прибавили номер того места, на котором оно стоит. Доказать, что среди полученных сумм найдутся хотя бы две, дающие при делении на 2n одинаковый остаток.
1.37. Вернемся к задаче 1 с фишками в круге и разрешим теперь двигать две фишки как в разные стороны, так и в одну сторону. Найти для этой задачи универсальный инвариант.
1.38. В таблице 3x3 расставлены числа +1 и -1. Разрешается менять знак одновременно у всех элементов строки или столбца. Докажите, что:
a) число орбит равно 16;
b) каждая орбита содержит ровно 32 элемента;
c) произведение всех чисел любого квадрата 2x2 в таблице является инвариантом;
d) произведения чисел в четырех квадратах, указанных на рисунке 11, образуют полную систему инвариантов.
Решать эти задачи можно в любом порядке; ясно, что одни помогают другим.
´ | ´ | ´ | ´ | |||
´ | ´ | |||||
´ | ´ |
´ | ´ | ´ | ´ | |||
´ | ´ | |||||
´ | ´ |
1.39. Вектор <а, b>, где a, b—целые числа, разрешается заменять одним из векторов <а + b, b>, <a—b, b>, <b, a>. Найти универсальный инвариант.
1.40. Пару векторов <а, b>, <с, d>, где а, b, с, d — целые числа, разрешается заменять на одну из пар <а+b, b>, <c+d, d>; <a - b, b>, <c – d, d>; <b, a>, <d, c>. Найти полную систему инвариантов.
2.Четность плюс инвариант
2.1.На доске написаны натуральные числа 1, 2, 3,…, 100. Разрешается стереть любые два числа и записать модуль их разности, после чего колличество написанных чисел уменьшается на 1. Может ли после 99 таких операций остаться записанным на доске число 1 ?
Решение .
Подсчитаем общую сумму начальных 100 чисел :
1 + 2 + 3 + …+ 100 = 5050.
Эта сумма оказалась четной . Переходя к следующему набору чисел , мы фактически в этой сумме заменяли сумму двух чисел на их разность. Но сумма и разность двух целых чисел имеют одинаковую четность, поэтому общая сумма записанных чисел останется четной. Следовательно , эта сумма равной 1 быть не может.
О т в е т : не может.
2.2. На доске написаны 8 плюсов и 11 минусов . Разрешается стереть любые два знака и написать вместо них плюс , если они одинаковы, и минус если они различны. Какой знак останется на доске после 18 таких операций?
2.3.На главной диагонали шашечной доски 10 на 10 стоят 10 шашек, все в разных клетках. За один ход разрешается выбрать любую пару шашек и передвинуть каждую из них на одну клетку вниз. Можно ли за несколько таких ходов поставить все шашки на нижнюю горизонталь?
2.4. На столе стоят вверх дном 7 стаканов. Разрешается за один раз перевернуть любые 4 стакана. Можно ли через несколько шагов поставить все стаканы в нормальное положение?
Решение.
Поставим в соответствии стакану, стоящему нормально, +1, а стоящему вверх дном, - 1. Инвариантом здесь будет произведение чисел, соответствующих всем 7 стаканам, так как при изменении знака у 4 сомножителей произведение не меняется. Но в начальном положении это произведение равно -1, а значит, стать +1 оно никогда не сможет.
2.5. На столе стоят 7 перевернутых стаканов. Разрешается одновременно переворачивать любые два стакана. Можно ли добиться того, чтобы все стаканы стояли правильно?
2.6. На столе стоят вверх дном 9 стаканов. Разрешается за один раз перевернуть любые 4 стакана . Можно ли за несколько таких ходов поставить все стаканы в нормальное положение?
2.7.Три кузнечика играют в чехарду : если кузнечик из точки А прыгает через кузнечика , находящегося в точке В , то он окажется в точке С , симметричной точке А относительно точки В. В исходном положении кузнечики занимают три вершины квадрата. Могут ли они ,играя в чехарду, попасть в четвертую его вершину?
Решение.
Введем на плоскости систему координат так, чтобы три вершины квадрата, в которых находятся кузнечики, имели координаты (0; 0),
(0; 1) и (1; 0). При указанных прыжках каждая из координат кузнечиков или остается неизменной, или изменяется в ту или иную сторону на четное число (рис 12) х
Так как в начальном положениипо меньшей мере одна из координат каждой из трех точек
четна , то она при прыжках останется четной: четность хо
тя бы одной из двух каждой из точек есть инвариант.
Поэтому попасть в М один из кузнечиков
не может Ответ: не может.
2.8.Имеется 30 карточек, каждая из которых выкрашена с одной стороны в красный, а с другой – в синий цвет. Карточки разложили подряд в виде полосы так, что у 8 карточек сверху оказался синий цвет. За один разрешается перевернуть любые 17 карточек. Можно ли за несколько ходов добиться того, чтобы полоса стала полностью: а) красной; б) синей?
Задача 1: На доске написано десять плюсов и пятнадцать минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется, на доске после выполнения двадцати четырех таких операций.
Решение.
Заменим каждый плюс числом 1, а каждый минус числом —1. Разрешенная операция описывается тогда так: стираются любые два числа и записывается их произведение. Поэтому произведение всех написанных на доске чисел остается неизменным. Так как вначале это произведение равнялось —1, то и в конце останется число —1, то есть знак минус.
Это рассуждение можно было провести иначе. Заменим все плюсы нулями, а минусы—единицами, и заметим, что сумма двух стираемых чисел имеет ту же четность, что и число, записываемое вместо них. Так как
сначала сумма всех чисел была нечетной (она равнялась 15), то и последнее оставшееся на доске число будет нечетным, то есть единицей, и, значит, на доске останется минус.
Наконец, третье решение задачи можно получить, заметив, что в результате каждой операции число минусов либо не изменяется, либо уменьшается на два. Поскольку сначала число минусов было нечетным, то и в конце останется один минус.
Проанализируем все три решения.
Первое решение основывалось на неизменяемости произведения написанных чисел, второе—на неизменяемости четности их суммы и третье — на неизменяемости четности числа минусов. В каждом решении нам удалось найти инвариант: произведение написанных чисел, четность суммы, четность числа минусов. Решение последующих задач также основывается на удачном подборе инварианта.
2.9. На доске написано несколько плюсов и минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они различны, и минус в противном случае. Докажите, что последний оставшийся на доске знак не зависит от порядка, в котором производились стирания.
2.10. В таблице 4х4 знаки «+» и «—» расставлены так, как показано на рисунке 13. Разрешается изменить знак на противоположный одновременно во всех клетках, расположенных в одной строке, в одном столбце или вдоль прямой, параллельной какой-нибудь из диагоналей (в частности, в любой угловой клетке). Можно ли с помощью этих операций получить таблицу, не содержащую ни одного минуса?
Решение.
Заменим плюсы и минусы числами 1 и –1. В качестве инварианта можно взять произведение чисел, находящихся в клетках, которые заштрихованы на рисунке 14, поскольку оно в результате
разрешенной операции все время сохраняет первоначальное значение, равное -1. Но, значит, среди заштрихованных чисел всегда будет оставаться -1, следовательно, получить таблицу, не содержащую ни одного минуса, нельзя.
2.11.Решите задачу 2 для таблиц, изображенных на рисунках 15 - 17.
2.12. На доске написано несколько нулей, единиц и двоек. Разрешается стереть две неравные цифры и вместо них написать одну цифру, отличную от стертых (2 вместо 0 и 1, 1 вместо 0 и 2, 0 вместо -1 и 2). Докажите, что если в результате нескольких таких операций на доске останется одна-единственная цифра, то она не зависит от порядка, в котором производились стирания.
Решение.
Обозначим через х0, х1, х2 число нулей, единиц и двоек соответственно. Выполнив один раз разрешенную операцию, мы изменим каждое из этих чисел на 1 и, следовательно, изменим четность всех трех чисел. Когда на доске остается одна цифра, два из чисел х0, x1, х2 становятся равными нулю, а .третье — единице. Значит, с самого начала два из этих чисел имеют одну четность, а третье—другую. Поэтому независимо от того, в каком порядке производятся стирания, в конце единице может равняться лишь одно из чисел х0, х1, x.2, которое с самого начала имело не ту четность, что два других.
Из приведенного решения видно, что если числа х0, х1, х2 имеют одну и ту же четность, то мы не сможем добиться, чтобы на доске осталась одна-единственная цифра. Докажите, что если среди чисел х0, х1 х2 есть как четные, так и нечетные, и, кроме того, хотя бы два из них отличны от нуля, то существует такой порядок стираний, что в результате на доске останется' одна цифра.
Изменим условие задачи 3: потребуем, .чтобы одни и те же две неравные цифры стирались два раза, а вместо них записывалась одна цифра, отличная от стертых. Предположим, что снова после некоторого числа операции на доске осталась одна-единственная цифра. Можно ли заранее, по числу нулей, единиц и двоек, предвидеть, какая это цифра?
Рассуждение с четностью здесь не помогает, ибо в результате выполнения каждой операции одно из чисел х0, х1, x2 меняет свою четность, а два других сохраняют четность, так что числа, имевшие разную четность, могут теперь получить одну и ту же четность. Однако можно заметить, что остатки от деления чисел х0, х1, х2 на 3 изменяются каждый раз таким образом, что равные остатки остаются равными, а неравные остаются неравными. Дальнейшие рассуждения повторяют решение задачи 3.
2.13. В каждой клетке таблицы 8х8 написано некоторое целое число. Разрешается выбирать в таблице любой квадрат размерами 3х3 или 4х4 и увеличивать на единицу все стоящие в клетках выбранного квадрата числа. Всегда ли можно с помощью таких операций преобразовать исходную таблицу в таблицу, у которой вес числа делятся на З?
Решение.
Нет, не всегда. Найдем сумму чисел, написанных в заштрихованных на рисунке 6 клетках. Поскольку любой квадрат размерами 4х4 содержит 12 заштрихованных клеток, а квадрат размерами 3х3— 6 или 9 таких клеток, то в результате описанной операции остаток от деления на 3 этой суммы (чисел, стоящих в заштрихованных клетках) не будет меняться. Поэтому, если с самого начала найденная сумма не делится на 3, то среди заштрихованных клеток все время будут сохраняться клетки, в которых написанные числа не кратны трем.
2.14.Из всякой ли таблицы можно в условиях задачи 4 получить таблицу, не содержащую четных чисел?
2.15.Числа I, 2, 3, ...., n расположены в некотором порядке. Разрешается менять местами любые два рядом стоящих числа. Докажите, что если проделать нечетное число таких операций, то наверняка получится отличное от первоначального расположения чисел 1, 2, 3, ...,n.
Решение.
Пусть a1, a2,…, an— произвольная перестановка из чисел 1, 2, 3, ..., п. Будем говорить, что числа аi, и аj, образуют в этой перестановке инверсию, если i<j, но ai>aj, то есть большее из этих чисел предшествует меньшему. Поменяв местами два соседних числа в перестановке, мы увеличим или уменьшим число инверсий на 1. Проделав же нечетное число таких операций, мы изменим четность числа инверсий, а значит, изменим и перестановку.
2.16.Докажите, что утверждение задачи 2.15 останется справедливым, если разрешить менять местами любые два числа в перестановке.
Указание.
Докажите, что любые два числа можно поменять местами, проделав нечетное число раз операцию, описанную в задаче 2.12.
Переход от одной перестановки чисел 1, 2, 3, .... п к другой перестановке этих чисел, при котором какие-нибудь два числа меняются местами, а остальные остаются на месте, называется транспозицией. Результат задачи 2.16 можно сформулировать так: выполнив нечетное число транспозиций, мы изменим перестановку
2.17. В различных пунктах кольцевого автодрома в одно и то же время в одном направлении стартовали 25 автомобилей. По правилам гонки автомобили могут обгонять друг друга, но при этом запрещен двойной обгон. Автомобили финишировали одновременно в тех же пунктах, что и стартовали. Докажите, что во время гонки было четное число обгонов.
Решение.
Окрасим один из автомобилей в желтый цвет, а остальным автомобилям присвоим номера 1, 2, 3, ..., 24 в том порядке, в каком они располагаются на старте за желтым автомобилем. В центре автодрома установим световое табло, на котором после каждого обгона будем указывать номера автомобилей в том порядке, в каком они следуют за желтым автомобилем. Тогда обгон, в котором не участвует желтый автомобиль, приводит к тому, что на световом табло меняются местами два соседних числа.
Посмотрим, что произойдет, если какой-нибудь автомобиль обгонит желтый. Если перед этим обгоном числа на табло образовывали перестановку а1, а2,…, а24 , то после обгона они образуют перестановку а2, а3,…, а24, а1. Заметим, что к такой же перестановке можно прийти, выполнив последовательно 23 транспозиции: а1, а2, а3,…, а24 à а2, а1, а3,…, а24 à а2, а3, а1,…, а24 à а2, а3, а1,…, а24 à… à а2, а3,…,а1, а24 à а2, а3,…, а24, а1
Если же желтый автомобиль совершил обгон, то из перестановки а1, а2, ..., а24 получим перестановку а24, а1, а2, а3,…, а23. Этот переход также можно заменить двадцатью тремя транспозициями.
Таким образом, любой обгон сводится к нечетному числу транспозиций. Если бы общее число обгонов было нечетным, то нечетным оказалось бы и общее число транспозиций. Остается воспользоваться результатом задачи 2.16.
... зміну площ, об'ємів, маси, віку; визначення дня тижня). 4. Задачі геометричного змісту (на просторову орієнтацію, метричні і позиційні задачі). 5. Задачі на рух. Технологія складання нестандартних задач полягає у: а) визначенні параметрів задачі, які покладаються в основу її сюжетної лінії. Наприклад, відстань між двома населеними пунктами; числа; зріст дітей; довжина відрізків; вік хлопчика ...
... «экспериментальных» (52 чел.) и «контрольном» (28 чел.), т. е. в нем участвовало 80 человек. В нашей методике моделировалось проблемное обучение, непосредственно направленное на развитие продуктивного мышления. Она была построена в виде естественного обучающего эксперимента, в котором школьники включаются в проблемные ситуации, рассчитанные на самостоятельное решение новых для них учебных задач. ...
... : 1. Задачи с несформированным условием – задачи, в которых имеются все данные, но вопрос задачи лишь подразумевается. 2. Задачи с избыточным условием – задачи, в которых имеются лишние данные, не нужные для решения, а лишь маскирующие необходимые для решения задачи данные. 3. Задачи с неполным составом условия – задачи, в которых отсутствуют некоторые данные, необходимые для решения задачи, ...
... этом промежутке неравенство (11) также не имеет решений. Итак, неравенство (11) решений не имеет. Ответ: Ø. 3 НЕКОТОРЫЕ ИСКУССТВЕННЫЕ СПОСОБЫ РЕШЕНИЯ УРАВНЕНИЙ Существуют и другие нестандартные методы решения уравнений и неравенств, помимо использования свойств функции. Данная глава посвящена дополнительным методам решения. 3.1 Умножение уравнения на функцию Иногда решение ...
0 комментариев