1991 г – водородное расслоение металла двадцати труб d720х22 мм трубопровода PG 14.06.01 влажного сероводородсодержащего газа;
1993 г. - водородное расслоение металла четырнадцати труб d720x22 мм трубопровода PG 14.01.01 влажного сероводородсодержащего газа;
1995г. - водородное расслоение (с выходом на сварной шов) металла буллита 100 В01-35; водородное расслоение с зонами ступенчатого растрескивания металла сосуда 367В01 (факельная емкость);
1996г. - утонение стенки обечайки емкости 741Е01 вплоть до образования сквозных повреждений;
1997г. - утонение стенки обечайки (с исходной 15 мм до 6,2 мм) в районе люка-лаза конвертора 04R403; водородное расслоение металла факельного сепаратора;
1998г. - водородное расслоение патрубка "Е" буллита 100В01-11; водородное растрескивание шириной около 450 мм металла обечайки буллита 100В01-28; водородное расслоение площадью около 6600 мм2 металла обечайки буллита 100В01-31; водородное расслоение и коррозионные повреждения сепаратора кислого газа 2У50В01; утонение стенок до отбраковочных значений входных сепараторов С-190-1 и С-190-2; недопустимое утонение стенок обечаек и днищ распределительных камер теплообменников 1У, 2У 374Е-14.
По результатам технического диагностирования, освидетельствования и надзора за период с 1990 по 1998 гг. на ОГПЗ заменены 92 технологических аппарата и теплообменника, 32 секции агрегатов воздушного охлаждения и большое количество пучков теплообменников (от 15 до 20 штук в год).
Только в 1998 г. проведено освидетельствование 465 аппаратов, контрольная диагностика 52 аппаратов и 3000 м трубопроводов. По результатам этих работ произведена замена 19 аппаратов, проведен ремонт 162 аппаратов, на которых отремонтировано 454 штуцера.
За этот же период на ОГПЗ произошли отказы: шпилек М12-М56 фланцевых соединений при воздействии коррозионной промышленной атмосферы на некоррозионностойкий металл шпилек;
насосов 100РО1, 374Р06А и других - вследствие разрушения подшипников;
насосов 741Н03-1, 741Н04-2 и других из-за прихватки внутренней обоймы подшипников к валу;
насосов 731Р06/2, 731Р08/1 и других - вследствие потери герметичности торцевых уплотнений;
поршневых компрессоров 331К01А, 09С101В и других – вследствие разрушения штоков по резьбе в месте крепления поршня;
печей 741П01, 31F01 и других - из-за язвенной коррозии змеевиков камер;
теплообменников 2У70-20ЕОЗ; ЗУ70-20Е10 и других - вследствие сквозной язвенной коррозии корпусов;
теплообменников 1У372Е07А, В; 2У372Е07А, В и других - из-за язвенной коррозии пучков.
Количество заменяемых ежегодно деталей, трубопроводов и оборудования ОГПЗ приведено в табл. 1.
Таблица 1.
Аппараты ОГПЗ подвержены в основном язвенной коррозии, имеются также отказы вследствие водородного растрескивания основного металла и сероводородного растрескивания сварных соединений аппаратов. Коррозионное состояние аппаратов, контактирующих с кислыми газами при температурах выше 100 °С, определяется в основном частотой их остановок. При остановках в аппаратах конденсируются кислые среды различного состава, содержащие H2S, С02, S02, вызывающие интенсивную коррозию оборудования. Основной причиной коррозии оборудования установок производства серы, эксплуатирующегося при высоких температурах, является отсутствие или недостаточно эффективная продувка его инертным газом при остановках, что приводит к образованию агрессивного конденсата. Трубные пучки теплообменного оборудования выходят из строя при забивке межтрубного пространства солевыми отложениями и сквозной коррозии металла. Причиной язвенной коррозии ребойлеров регенераторов является агрессивность гликолевого раствора, обусловленная разложением его при температуре выше 100 °С и накоплением в растворе органических кислот. Язвенная коррозия в области раздела жидкой и паровой фаз ребойлеров регенераторов аминового раствора обусловлена разложением при температуре выше 121 °С аминового раствора с увеличением его коррозионной активности. Отказы насосов обусловлены в основном разрушением подшипников; поршневых компрессоров - разрушением штоков по резьбе в месте крепления поршня; шпилек фланцевых соединений воздействием агрессивной промышленной атмосферы на коррозионно-нестойкий металл шпилек.
5. Механизм сероводородного растрескивания оборудования и трубопроводов
Как было отмечено выше, сероводородное растрескивание оборудования ОГПЗ инициируется концентраторами напряжений: дефекты сварных соединений и технологические дефекты основного металла, резьбы, следы от ключей, коррозионные язвы и т.п. Результаты лабораторных испытаний сварных образцов из стали 20 также свидетельствуют о зарождении сероводородного растрескивания от дефектов, которые более чем в 10 раз снижают долговечность сварных соединений. Сопротивление CP качественных сварных соединений не ниже, чем основного металла, кроме того, за 20 лет эксплуатации сварных конструкций в металле швов в отличие от основного проката не обнаружено ни одного случая водородного расслоения. Это объясняется применением электродных материалов с низким содержанием серы, отсутствием в шве текстуры, а также тем, что условия плавления и кристаллизации шва способствуют образованию мелких сульфидных включений глобулярной формы и равномерному их распределению по литому металлу шва. В прокате из стали типа сталь 20 оборудования ОГПЗ наблюдается, особенно в срединной части стенки конструкции, значительное количество сульфидных включений дискообразной формы длиной от долей до десятков миллиметров. На границах раздела сульфид - матрица при охлаждении после завершения кристаллизации возможно образование микрополостей, так как коэффициент термического расширения сульфидов FeS - MnS больше, чем у ферритной матрицы (18х10-6 К-1 против 11,810-6 К-1). Металл матрицы в зоне границы раздела фаз, являясь областью объемного растяжения кристаллической решетки, может выполнять роль коллекторов для водорода. Образующийся в результате контакта стали с сероводородсодержащей средой водород, попадая в эти несплошности, молизуется, вызывая водородное растрескивание металла. Трещины водородного расслоения зарождаются внутри металла на границах раздела матрица - включение и распространяются, как правило, межкристаллитно в направлении, параллельном его поверхности; при взаимодействии этих трещин-расслоений возникает ступенчатая магистральная трещина, пронизывающая часть или весь металл по сечению. В отличие от водородного расслоения при сероводородном растрескивание трещины зарождаются с поверхности, контактирующей с сероводородсодержащей средой, или в приповерхностных слоях и распространяются преимущественно перпендикулярно этой поверхности, т.е. нормально к действующим напряжениям. Магистральная трещина сероводородного растрескивания при развитии соединяет отдельные трещины, возникшие вследствие молизации водорода в коллекторах и ориентированные вдоль проката параллельно приложенным напряжениям.
Металлографическими и фрактографическими исследованиями сероводородного растрескивания изделий и образцов, испытанных при MP (3,6х10-6 м/с2) в натурной сероводородсодержащей 72 среде ОГПЗ, выявлены следующие характерные особенности сероводородного растрескивания. В отличие от коррозионного растрескивания, при сероводородном растрескивании не наблюдается значительных следов электрохимического растворения, и сероводородное растрескивание может зарождаться в приповерхностных объемах металла. Зона субкритического роста трещин характеризуется межзеренным разрушением, наличием вторичных трещин, нормальных к плоскости магистральной трещины , т.е. параллельных растягивающим напряжениям. Зарождение и развитие вторичных трещин в значительной мере определяется состоянием границ зерен и наличием вблизи развивающейся трещины неметаллических включений, следы которых наблюдаются в изломах. Макроскопическая трещина образуется путем объединения многих межзеренных микротрещин. Их поверхность состоит из гладких фасеток, разделенных множеством гребешков или ступенек, отделяющих различные уровни продвижения магистральной трещины. Общее направление гребешков указывает на то, что трещина распространяется от поверхности внутрь, сливаясь с микротрещинами, периодически зарождающимися на границах зерен. Наблюдаются и самостоятельные микротрещины, не объединенные в более крупную трещину. Атомарный водород локализуется на границах раздела матрица - включение, а также в межзеренных коллекторах, где идет реакция его молизации и возникают микрорасслоения - микротрещины. Последние под действием внутреннего давления водорода и внешней нагрузки увеличиваются, перемычки между ними разрушаются с последующим образованием магистральной трещины.
Таким образом, сероводородное растрескивание стальных конструкций, контактирующих с сероводородсодержащими средами, происходит, как и водородное растрескивание-расслоени, межкристаллитно. В настоящее время преобладает "островковая" модель границ, согласно которой граница зерен состоит из чередующихся островков с хорошим и плохим сопряжением кристаллических решеток смежных кристаллитов - каналы вакансий (микро-несплошностей). Строение и протяженность участков плохого сопряжения зависят от угла разориентировки смежных зерен. Малоугловые границы (угол до 15°) представляют как ряд отдельных дислокаций и сопряженных узлов решетки между дислокациями, сопровождающими ее деформацией. Болыпеугловые границы (угол больше 15°) рассматривают как область скопления дислокаций, а сопряжение узлов происходит в результате значительных локальных искажений решетки, при этом область искажений может достигать до 100 параметров решетки. Химический состав приграничных слоев заметно отличается от состава кристаллитов, вследствие обогащения границ зерен фосфором и другими атомами примесей. Вероятность адсорбции водорода на границе увеличивается из-за большей энергии связи водорода с атомами примесей (Р, S), чем с железом, поэтому концентрация водорода на границе зерен выше, чем в кристаллитах. Растворимость водорода в межзеренном веществе на три порядка больше, чем в б-железе. Границы зерен являются также предпочтительными путями диффузии водорода в стали при ее наводороживании. Причем, диффузионный водород неравномерно распределяется по толщине металла, наибольшее его содержание наблюдается в слое толщиной 0,2-0,3 мм, прилегающем к поверхности контакта с наводороживающей средой, где образуется большое число коллекторов, заполненных молекулярным водородом. При этом абсорбция сталью водорода зависит от ее структурно-физического состояния.
Холоднодеформированная мягкая сталь может поглотить в 100 раз больше водорода, чем отожженная. В районе концентратора напряжения скорость накопления водорода в стали возрастает в 10 раз и более по сравнению с областями равномерных напряжений. Известно также, что водород диффундирует в области трехосных растягивающих напряжений, которые, например, для стали находятся на расстоянии 0,3-0,4 мм от вершины трещины. При действии механических напряжений 76 диффузия водорода в сталь увеличивается, особенно ускоряется диффузия при напряжениях, вызывающих пластические деформации стали. Последнее объясняют усилением проникновения водорода вдоль плоскостей скольжения и через связанные с ними дислокации и скопление вакансий.
Анализ сероводородного растрескивания натурных конструкций ОГПЗ и образцов с учетом существующих представлений о механизме сероводородного растрескивания и свойствах границ зерен позволил заключить, что очагами зарождения микротрещин при контакте сталей с сероводородсодержащей средой, наряду с границами раздела матрица - неметаллическое включение, служат островки границ с плохим сопряжением кристаллических решеток смежных кристаллитов. Эти островки (каналы вакансий) являются микрополостями-микро-концентраторами, в области которых под действиями остаточных напряжений или внешних нагрузок (особенно при наличии концентраторов напряжений) возникает трехосное напряженное состояние. Водород находится в металле в виде ионов, которые, попадая в микрополости через границы зерен и из кристаллической решетки, захватывают из электронного облака металла электроны и превращаются в атомы, уменьшая прочность этих участков границ. По мере повышения концентрации атомов водород молизуется. Увеличение давления молизованного водорода в микрорасслоениях до критических значений, наряду с усугубляющим действием водорода, находящегося вблизи этих микрорасслоений - в областях трехосного напряженного состояния, приводит к активизации дислокационных процессов, микродеформациям и разрушению островков границ с хорошим сопряжением решеток смежных зерен. В дальнейшем описанные процессы повторяются, вызывая рост и объединение микротрещин. Наличие при сероводородном растрескивании вторичных трещин - водородных расслоений, расположенных перпендикулярно к магистральной трещине, т.е. параллельно действующим напряжениям, подтверждает то, что контролирующими процессами сероводородного растрескивания, как и водородного расслоения, являются: сорбция металлом ионов водорода и молизация водорода в микронесплошностях, находящихся на границах зерен и на границах раздела матрица - неметаллическое включение.
... готовность начинается с оповещения и сбора руководящего состава. 5.1 Оповещение и сбор руководящего состава при возникновении чрезвычайной ситуации на Туймазинском газоперерабатывающем заводе Место сбора и работы комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности Туймазинского газоперерабатывающего завода (КЧС ПБ) - здание бытового помещения, ...
... от кислых газов (м3/с) Концентрированные кислые газы, полученные при регенерации метанола, общим потоком подаются на установку переработки кислых газов с получением товарной серы. Из практики известно, что в промышленных условиях при очистке природного газа от кислых газов метанолом с последующим выделением кислых газов при регенерации, получают концентрированный кислый газ, содержащий 58% Н2S ...
... договоры фрахтования, получая право на использование судна. 2.1 Обеспечение технической и экологической безопасности в процессе транспортировки нефти Одним из наиболее перспективных путей ограждения среды от загрязнения является создание комплексной автоматизации процессов добычи, транспорта и хранения нефти. В нашей стране такая система впервые была создана в 70-х гг. и применена в районах ...
... производством. Техническое перевооружение и реконструкция позволяют устранить возникающие иногда диспропорции в мощности отдельных видов оборудования или основного и подсобно-вспомогательного производства. Заключение Нефтегазовая отрасль Республики Казахстан является неотъемлемой частью экономики государства, развитие которой во многом определяет стабильность социально - экономического ...
0 комментариев