2.9 Расчет металлоконструкции стрелы

Определим наиболее нагруженное положение стрелы.

В положении 3Р будет максимальное усилие действующие на шарнир В (стрела и рукоять) от рукояти.

Зная значения максимального усилия гидроцилиндра стрелы, гидроцилиндра рукояти, усилия в шарнире соединения стрелы с рукоятью, методом плана сил определим силы, которые действуют в шарнирах стрелы. Все построения для определения сил, выполним в масштабе.

Воспользовавшись методом плана сил, мы определили значение и направление силы Р1 = 790.6 кН.


Рис.20 План сил возникающих в стреле.

Выполним проверку:

ΣFx = 0;

ΣFy = 0;

ΣFx = 0

Р4 = 555.1 · cos 54º = -324 кН;

Р3 = 492.5 · cos 51.5º = 308.6 кН;

Р2 = 824.6 · cos 47º = -560 кН;

Р1 = 790.6 · cos 43.5º= 575.4 кН.

308.6 – 324 + 575.4 – 560 = 0

ΣFy = 0

Р4 = 555.1 · cos36º = -448 кН;

Р3 = 492.5 · cos 38.5º = 387 кН;

Р2 = 824.6 · cos 43º = 604 кН;

Р1 = 790.6 · cos 46.5º = -543 кН;

Исходные данные для расчета стрелы:

Р1 = 790.6 кН;

Р2 = 824.6 кН;

Р3 = 492.5 кН;

Р4 = 555.1 кН;

Р1X = 790.6∙ cos 20º = 742.9 кН;

Р1Y = 790.6∙ cos 80º = 137.28 кН;

Р2X = 824.6 ∙ cos 85.5º = 800 кН;

Р2Y = 824.5 ∙ cos 4.5º = 199.48 кН;

Р3X = 492.5 ∙ cos 4º = 491.3 кН;

Р3Y = 492.5 ∙ cos 86º = 34.3 кН;

Р4X = 555.1 ∙ cos 7.5º = 550.3 кН;

Р4Y = 555.1 ∙ cos 82.5º = 72.45 кН;

М1 = 492.5∙ 0.422 = 207.8 кНм;

q1 = 5.36 кНм – распределенная нагрузка от веса стрелы (для второго участка);

q2 = 8.99кНм – распределенная нагрузка от веса стрелы (для второго участка);

Схема распределений усилий в стреле.

Рассмотрим первый участок 0 ≤ Х1 ≤ 2.35 м:

а). Q1∙(Х1) + Р1Y + q1 ∙X1 = 0

Q1∙(Х1) = - Р1Y – q1 ∙X1

Q1∙(0) = - Р1Y – q1 ∙X1 = -137.28 – 0 = -137.28 кН

Q1∙(2.35) = - Р1Y – q1 ∙X1 = -137.28 – 2.35 ∙ 5.36 = -149.08 кН

б). М1∙(Х1) + Р1Y ∙(Х1)+ q1 ∙X1 ∙( X1/2) = 0

М1∙(Х1) = - Р1Y ∙(Х1) – q1 ∙X1 ∙( X1/2)

М1∙(0) = - Р1Y ∙(Х1) – q1 ∙X1 ∙( X1/2)= 0

М1∙(2.35) = - Р1Y ∙(Х1) – q1∙X1 ∙( X1/2)= - 137.28 ∙(2.35) – 2.35 ∙ 5.36 ∙( 2.35/2)= -337.4 кНм

в). N1∙(Х1) – Р = 0

N1∙(Х1) = Р= 742.9 кН


Рассмотрим второй участок 2.35 м ≤ Х2 ≤ 2.4 м:

а). Q2∙(Х2) + Р1Y- Р2Y + q1∙X = 0

Q2∙(Х2) = - Р1Y+ Р2Y - q1∙X2

Q2∙(2.35) = 199.48 - 137.28 - 5.36∙2.35 = 49.6 кН

Q2∙(2.4) = 199.48 - 137.28 - 5.36∙2.4 = 49.3 кН

б). М2∙(Х2) + Р1Y ∙(Х2) - Р2Y ∙(Х2 – l1) + q1 Х22 – l1) = 0

М2∙(Х2) = - Р1Y ∙(Х2) - Р2Y ∙(Х2 – l1) - q1∙ Х22 – l1)

М2∙(2.35) = 0 – 137.28∙2.35 – 5.36∙2.35∙(2.35/2) = - 337.4 кНм

М2∙(2.4) = 199.48∙(2.4 – 2.35) – 137.28∙2.4 – 5.36∙2.4∙(2.4/2) = -334.9кНм

в). N1∙(Х2) – Р + Р = 0 N1∙(Х2) = Р– Р = 742.9 – 800 = -57.1 кН

Рассмотрим третий участок 0 м ≤ Х3 ≤ 1.83 м:

а). Q3∙(Х3) – Р4Y- q2 ∙ X3 = 0

Q3∙(Х3) = Р4Y+q2 ∙ X3

Q3∙(0) = Р4Y+ q2 ∙X3 = 72.45 кН

Q3∙(1.83) = Р4Y+ q2 ∙X3 = 72.45 + 8.99∙1.83= 88.9 кН

б). - М3∙(Х3) – Р4Y ∙(Х3) – q2 ∙X3∙( X3/2) = 0

М3∙(Х3) = – Р4Y ∙(Х3) – q2 ∙X3∙( X3/2)

М3∙(0) = 0 кНм

М3∙(1.83) = – Р4Y ∙(Х3) – q2 ∙X3∙( X3/2)= - 8.99 ∙1.83 ∙ (1.83 /2) – 72.45∙1.83 = -269.1 кНм

в). N3∙(Х3) + Р= 0 N3∙(Х3) =- Р = - 550.3 кН

Рассмотрим четвертый участок 1.83 ≤ Х4 ≤ 2.64 м:

а). Q4∙(Х4) + Р3Y – Р4Y - q∙X4 = 0 Q4∙(Х4) = - Р3Y+ Р4Y + q∙X4

Q4∙(1.83) = - Р3Y + Р4Y + q∙X4 = 8.99 ∙1.83 + 72.45 - 34.3 = 54.6 кН

Q4∙(2.64) = - Р3Y + Р4Y + q∙X4 = 8.99 ∙2.64 + 72.45 - 34.3= 61.88 кН

б). - М4∙(Х4) – М1 – Р4Y ∙(Х4) + Р3Y ∙(Х4 – l1) - q∙X4 ∙( X4/2) = 0

М4∙(Х4) = – М1 – Р4Y ∙(Х4) + Р3Y ∙(Х4 – l1) - q∙X4 ∙( X4/2)

М4∙(1.83) =- 207.8– 72.45 ∙(1.83) + 0 – 8.99∙1.83∙( 1.83/2) = - 355.43 кНм

М4∙(2.64) =- 207.8– 72.45 ∙(2.64) + 34.3(2.64-1.83) – 8.99∙2.64∙( 2.64/2) = =- 402.6 кНм

в). N4∙(Х4) – Р+ Р = 0

N4∙(Х4) = Р- Р = 491.3 – 550.3 = - 59 кН

Произведем расчет пальцев проушин стрелы.

1. Расчет пальца проушины стрелы для крепления рукояти:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 75 мм – диаметр пальца;

LПАЛ = 376 мм – длина пальца (определяется исходя из ширины рукояти);

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 752 = 4415.625 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 37.53 = 41396.48 мм3

Знаязначение усилия в шарнире стрелы РРУК = 555.1 кН, определим τПАЛ, МПа:

τПАЛ = Ррук / 2∙ А ПАЛ = 555100 / 2∙ 4415.625 = 62.85 МПа

Определим напряжение возникающие в пальце стрелы, МПа:


σПАЛ = Ррук ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 1260 МПа

В качестве материала пальца используем сталь 40ХН σтек = 1450 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

2. Расчет пальца проушины стрелы для крепления гидроцилиндра рукояти:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 70 мм – диаметр пальца;

LПАЛ = 236 мм – длина пальца;

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 702 = 3846.5 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 353 = 33656.875 мм3

Знаязначение усилия гидроцилиндра стрелы РГЦР = 492.5 кН, определим τПАЛ, МПа:

τПАЛ = Ргцр / 2∙ А ПАЛ = 492500 / 2∙ 3846.5 = 64 МПа

Определим напряжение возникающие в пальце рукояти, МПа:

σПАЛ = Ргцр ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 702 МПа


В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

3. Расчет пальца проушины стрелы для крепления гидроцилиндра стрелы:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 120 мм – диаметр пальца;

LПАЛ = 376 мм – длина пальца (определяется исходя из ширины стрелы);

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 1202 = 11304 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 603 = 169560 мм3

Знаязначение усилия гидроцилиндра стрелы РСТР = 824.6 кН, определим τПАЛ, МПа:

τПАЛ = Рстр / 2∙ А ПАЛ = 824600 / 2∙ 11304 = 36 МПа

Определим напряжение возникающие в пальце стрелы, МПа:

σПАЛ = Рстр ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 457 МПа


В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

4. Расчет пальца проушины для крепления стрелы к базе экскаватора:

Расчет производится на срез и изгиб.

Исходные данные:

DПАЛ = 120 мм – диаметр пальца;

LПАЛ = 595 мм – длина пальца (определяется исходя из ширины стрелы);

Определим площадь сечения пальца, мм2:

А ПАЛ = 0.785 ∙ d2 = 0.785 ∙ 1202 = 11304 мм2

Определим момент осевой сопротивления пальца, мм3:

W ПАЛ = 0.785 ∙ r3 = 0.785 ∙ 603 = 169560 мм3

Знаязначение усилия в шарнире стрелы РБ = 790.6 кН, определим τПАЛ, МПа:

τПАЛ = Рб / 2∙ А ПАЛ = 790600 / 2∙ 11304 = 34.9 МПа

Определим напряжение возникающие в пальце стрелы, МПа:

σПАЛ = Рб ∙ L ПАЛ /2 ∙ 2 ∙ W ПАЛ = 693.5 МПа

В качестве материала пальца используем сталь 40Х σтек = 900 МПа (термообработка – закалка и средний отпуск). Напряжение в пальце от среза и изгиба не превышает допустимых. Напряжение среза и изгиба действуют в разных местах (изгиб – по середине пальца, срез – сбоку от проушины, поэтому напряжения действуют совместно.)

Определим сечение стрелы в шарнире соединения стрелы с базой экскаватора 1-1.

Определим размеры поперечного сечения стрелы 1-1. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

1. F1 = b ∙ (H - h) = 0.595 ∙ (0.234 – 0.120) = 0.06783 м2

X1 = b / 2 = 0.2975 м

Y1 = H / 2 = 0.117 м

Определим момент инерции сечения:

JX1 = b / 12 ∙ (H3 – h3) = 0.595 / 12 ∙ (0. 2343 – 0. 1203) = 0.0005536 м4

Определим момент сопротивления относительно нейтральной линии:

W = b / 6Н ∙ (H3 – h3) =0.00469 м3

Определим напряжения возникающие в сечение 1-1:

σ= N /Fвсего сечения = 10.9 МПа,

N = 742.9 кН;

Fвсего сечения = 0.06783 м2

σ ЭКВ = = 10.9 МПа


Определим сечение стрелы 2-2.

Определим размеры поперечного сечения стрелы 2-2. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

F = HB - bh = 0.369 ∙ 0.340 – 0.323∙ 0.298 = 0.029206 м2

X1 = 0.17 м

Y1 = 0.1845 м

Определим момент инерции сечения:

JX = HB3 –b h3 / 12 = 0.000496 м4

Определим момент сопротивления сечения:

W = HB3 –b h3 / 6H = 0.002919 м3

Определим напряжения возникающие в сечение 2-2:

σmax= Mизг /W = 57.79 МПа,

где

Мизг = 168.7 кНм

τ = Q / ∑Fст = 10.55 МПа,

Q = 143.18 кН;

∑Fст = 0.013566 м2

σ= N /Fвсего сечения = 12.7 МПа,


где

N = 371.45 кН;

Fвсего сечения = 0.029206 м2

σ ЭКВ = = 72.85 МПа

Определим сечение стрелы в шарнире соединения стрелы с гидроцилиндром стрелы 3-3.

Определим размеры поперечного сечения стрелы 3-3. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

1. F1 = b ∙ (H - h) = 0.298 ∙ (0.200 – 0.120) = 0.02384 м2

X1 = b / 2 = 0.149 м

Y1 = H / 2 = 0.1 м

1.  F2 = Bh+2b ∙ (H - h) = 0.340 ∙ 0.023 + 2 ∙ 0.021 ∙ (0.1675 – 0.023) =

= 0.013889 м2

X1 = B / 2 = 0.17 м

Y1 = Bh2+2b ∙ (H2 - h2) / 2(Bh+2b ∙ (H - h)) = 0.0483 м

Y1' = H - Y1 = 0.1192 м

2.  F3 = Bh+2b ∙ (H - h) = 0.340 ∙ 0.023 + 2 ∙ 0.021 ∙ (0.1675 – 0.023) =

= 0.013889 м2

X1 = B / 2 = 0.17 м

Y1 = Bh2+2b ∙ (H2 - h2) / 2(Bh+2b ∙ (H - h)) = 0.0483 м

Y1' = H - Y1 = 0.1192 м

Определим моменты инерции сечения в отдельности и всего сечения в целом:


1. JX1 = b / 12 ∙ (H3 – h3) = 0.298 / 12 ∙ (0.23 – 0.123) = 0.000155754 м4

2. JX2 = Bh3 + 2 b ∙ (H – h) 3/ 12 + Bh(Y1 – h/2) 2 + 2 b ∙ (H – h) (H – h / 2 + h - Y1)= = 0.000306433 м4

3. JX3 = Bh3 + 2 b ∙ (H – h) 3/ 12 + Bh(Y1 – h/2) 2 + 2 b ∙ (H – h) (H – h / 2 + h - Y1)= = 0.000306433 м4

Учитывая поправку Штейнера получим:

JX2 + ( y2)2 F2 = 0.000446 м4

JX3 + ( y3)2 F3 = 0.000446 м4

JX общ =∑JXi= 0.00105 м4

Определим момент сопротивления относительно нейтральной линии:

W = JX общ / YC = 0.00461 м3

Определим напряжения возникающие в сечение 3-3:

σmax= Mизг /W = 73.18 МПа,

где

Мизг = 337.4 кНм

τ = Q / ∑Fст = 31.5 МПа,

Q = 49.6 кН;

∑Fст = 0.0015918 м2

σ= N /Fвсего сечения = 1.1 МПа,

где


N = 57.1 кН;

Fвсего сечения = 0.051618 м2

σ ЭКВ = = 74.3 МПа

Определим сечение стрелы 4-4.

Определим размеры поперечного сечения стрелы 4-4. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

F = HB - bh = 0.00588 м2

X1 = 0.170 м

Y1 = 0.2275 м

Определим момент инерции сечения:

JX = HB3 –b h3 / 12 = 0.000588 м4

Определим момент сопротивления сечения:

W = HB3 –b h3 / 6H = 0.00346 м3

Определим напряжения возникающие в сечение 4-4:

σmax= Mизг /W = 97.15 МПа,

где

Мизг = 336.15 кНм

τ = Q / ∑Fст = 2.8 МПа,


где

Q = 49.6 кН;

∑Fст = 0.017178 м2

σ= N /Fвсего сечения = 9.71 МПа,

где

N = 57.1 кН;

Fвсего сечения = 0.00588 м2

σ ЭКВ = = 106.96 МПа

Определим сечение стрелы 5-5.

Определим размеры поперечного сечения стрелы 5-5. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

F = HB - bh = 0.0031138 м2

X1 = 0.170 м

Y1 = 0.2075 м

Определим момент инерции сечения:

JX = HB3 –b h3 / 12 = 0.000545508 м4

Определим момент сопротивления сечения:

W = HB3 –b h3 / 6H = 0.00320887 м3


Определим напряжения возникающие в сечение 5-5:

σmax= Mизг /W = 46 МПа,

где

Мизг = 147.63 кНм

τ = Q / ∑Fст = 5.73 МПа,

где

Q = 88.9 кН;

∑Fст = 0.015498 м2

σ= N /Fвсего сечения = 176.7 МПа,

где

N = 550.3 кН;

Fвсего сечения = 0.0031138 м2

σ ЭКВ = = 222.92 МПа

Определим сечение стрелы 6-6.

Определим размеры поперечного сечения стрелы 6-6. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

F = HB - bh = 0.0028282 м2

X1 = 0.170 м

Y1 = 0.1735 м


Определим момент инерции сечения:

JX = HB3 –b h3 / 12 = 0.000472746 м4

Определим момент сопротивления сечения:

W = HB3 –b h3 / 6H = 0.00278086 м3

Определим напряжения возникающие в сечение 6-6:

σmax= Mизг /W = 48.38 МПа,

где

Мизг = 134.55 кНм

τ = Q / ∑Fст = 5.2 МПа,

где

Q = 66.137 кН;

∑Fст = 0.012642 м2

σ= N /Fвсего сечения = 27.8 МПа,

где

N = 78.6 кН;

Fвсего сечения = 0.0028282 м2

σ ЭКВ = = 76.7 МПа


Определим сечение стрелы в шарнире соединения стрелы с рукоятью 7-7.

Определим размеры поперечного сечения стрелы 7-7. Рассмотрим сечение, его геометрические характеристики, размеры сечения, исходя из условий прочности.

F = hb = 0.067 ∙ 0.064 = 0.004288 м2

X1 = b / 2 = 0.032 м

Y1 = h / 2 = 0.0335 м

Определим моменты инерции сечения в отдельности и всего сечения в целом:

Учитывая поправку Штейнера получим JX :

JX = (b h3 / 12+ F ∙ (y) 2) ∙ 4 = 0.000352268 м4

Определим момент сопротивления относительно нейтральной линии:

W = JX / YC = 0.0033709 м3

Определим напряжения возникающие в сечение 7-7:

τ = Q / ∑Fст = 7.23 МПа,

где

Q = 124 кН;

∑Fст = 0.017152 м2

σ= N /Fвсего сечения = 27.05 МПа,


где

N = 463.9 кН;

Fвсего сечения = 0.017152 м2

σ ЭКВ = = 29.8 МПа

По окончанию расчетов рукояти, стрелы и ковша примем сталь марки 09Г2С ГОСТ 19282-73 с пределом текучести 305 МПа, которая рекомендуется в "РД 2201…86" для проектирования металлоконструкции экскаватора.


Заключение

В проекте, в соответствии с темой "Проектирование рабочего оборудования одноковшового экскаватора", было спроектировано рабочее оборудование экскаватора, состоящие из стрелы, рукояти и ковша, тяги, коромысла с привязанными к ним гидроцилиндрами. Для осуществления данного проекта проведены расчеты:

- разработка базовой части гусеничного экскаватора;

- определение основных параметров рабочего оборудования;

- расчет рабочего оборудования;

- расчет параметров ковша;

- расчет объёмного гидропривода рабочего оборудования экскаватора;

- расчет параметров насосно- силовой установки. Выбор типоразмеров насосов и первичного двигателя;

- расчет металлоконструкции рабочего оборудования;

В результате данных расчетов получили основные характеристики экскаватора:

- объём ковша – 0.4 м3;

- глубина копания – 5.91 м;

- максимальная высота выгрузки – 4.6 м;

- максимальный радиус копания – 8.9 м;

- угол поворота рабочего оборудования - 360º;

экскаватор ковш гидроцилиндр металлоконструкция
Список литературы

1.  Крикун В.Я., Манасян В.Г. "Расчет основных параметров гидравлических экскаваторов с рабочим оборудованием обратная лопата" Издание первое – М., "Издательство Ассоциации строительных вузов", 2001 г.

2.  Анурьев В.И. " Справочник конструктора-машиностроителя", т.1. М., "Машиностроение", 1979 г.

3.  Анурьев В.И. " Справочник конструктора-машиностроителя", т.2. М., "Машиностроение", 1980 г.

4.  Анурьев В.И. " Справочник конструктора-машиностроителя", т.3. М., "Машиностроение", 1981 г.

5.  Крикун В.Я., "Привязка гидравлических цилиндров копающих механизмов к рабочему оборудованию экскаватора" – М., "Строительные и дорожные машины", 1997 г.


Информация о работе «Проектирование рабочего оборудования одноковшового экскаватора»
Раздел: Транспорт
Количество знаков с пробелами: 72436
Количество таблиц: 4
Количество изображений: 22

Похожие работы

Скачать
11706
0
5

... трубопровод=36 =36 =12 По принятому диаметру действительная скорость движения жидкости в трубопроводах (): всасывающий трубопровод сливной трубопровод ; ; напорный трубопровод ; ; Устойчивость одноковшовых погрузчиков Продольную устойчивость погрузчика рассчитывают относительно передней и задней оси опрокидывания. Погрузчик располагают так, чтобы его продольная ось была ...

Скачать
48464
8
20

... массы ковша. Грейфер применяют обычно для разработки грунтов малой плотности (I и II группы) и находящихся под водой. Более плотные грунты предварительно необходимо рыхлить. Производительность одноковшового экскаватора снижается по мере увеличения плотности грунта. Кроме того, она зависит от способа разработки грунта (при работе "на вымет" производительность повышается, при погрузке на ...

Скачать
198743
25
38

... и транспортного оборудования. Структуры комплексной механизации при использовании оборудования цикличного действия показаны на рис. 3.6. Комплекс оборудования формируется из соответствующего основного и вспомогательного оборудования отдельных технологических процессов: подготовка пород к выемке, выемочно-погрузочные работы, перемещение горной массы, отвалообразование (при разработке пустых пород), ...

Скачать
56846
15
1

... размером 0,5х1,2 м и 862 щита размером 0,4х1,2 м. 6. УКАЗАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ Опалубку, применяемую для возведения монолитных железобетонных конструкций, необходимо изготовлять и применять в соответствии с проектом производства работ, утвержденным в установленном порядке. При установке элементов опалубки в несколько ярусов каждый последующий ярус следует устанавливать только после ...

0 комментариев


Наверх