Содержание
ультразвук доплер кровоток вибрация
1. Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук
2. Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука
3. Эффект Доплера и его применение для неинвазивного измерения скорости кровотока
4. Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы
5. Вибрации, их физические характеристики
Список использованных источников
1. Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук
Ультразвуком называют упругие механические колебания и волны, частота которых превышает 20 кГц, распространяющиеся в форме продольных волн в различных средах. Верхним пределом УЗ частот считают 106 - 107 кГц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит, от агрегатного состояния вещества, в котором распространяется УЗ волна.
Источники и приемники акустических колебаний и ультразвука (рис. 1).
Ультразвук получается с помощью аппаратов, основанных на использовании явлений магнитострикции (при низких частотах) или обратного пьезоэлектрического эффекта (при высоких). Магнитострикция заключается в изменении длины (удлинение и укорочение) ферромагнитного стержня, помещенного в высокочастотное магнитное поле, с частотой изменения направления поля.
Рис. 1 - Магнитострикционный излучатель УЗ: 1 – волновод, 2 – концентратор звуковой волны, 3 – сердечник, 4 – обмотка магнитострикционного преобразователя, 5 – провода к генератору электрических колебаний
Обратный пьезоэлектрический эффект заключается в изменении размера (удлинение и укорочение) кристаллической пластинки (кварц, сегнетова соль, титанат бария) под действием высокочастотного электрического поля (до 3 мГц).
Рис. 2 - Пьезоэлектрический излучатель УЗ
Электромагнитные излучатели - получение колебаний подвижной механической системой под действием электромагнита, возбуждаемого переменным током 10¸200Гц - 1¸2кГц (рис. 2).
Электродинамические излучатели - взаимодействие магнитных полей неподвижного постоянного магнита и звуковой катушки (или стержня), питаемой переменным током (50 - 5000 Гц).
Существуют также и аэро- и гидродинамические излучатели низкочастотного ультразвука.
Приемники УЗ - электроакустические преобразователи. К ним относятся в первую очередь пьезоэлектрические преобразователи, магнитострикционные, полупроводниковые и пьезополупроводниковые, электростатические приемники и электродинамические.
Термические приемники - для измерения интенсивности УЗ.
Колебания размеров тела, усиленные путем использования явления резонанса (т.е. когда частота приложенного переменного напряжения совпадает с собственной частотой колебаний пластинки), вызывают в окружающей тело жидкой или газообразной среде продольную упругую УЗ волну.
УЗ волна, как и звуковая, состоит из чередующихся участков сгущения и разрежения частиц среды. Скорости распространения звуковых и УЗ волн примерно одинаковы. Длина УЗ волн значительно меньше длины звуковых волн. В связи с этим УЗ волны от плоского источника распространяются направленным потоком (УЗ луч) и легко фокусируются. УЗ волна имеет значительно большую интенсивность, чем звуковая. Она может достигать порядка нескольких ватт на квадратный сантиметр, а при фокусировке волны в небольшом объеме среды - сотен и тысяч Вт/см3. Если I = 10 Вт/см3, то это в 10000 раз больше силы звука в воздухе от большого оркестра при его максимальном звучании (10-3 Вт/см2).
В зависимости от частоты принято делить ультразвук на 3 диапазона: низкой (1.5.104 – 105 Гц), средней (105 – 107 Гц) и высокой (107 – 109 Гц) частоты.
Биологическое действие ультразвука во многом определяется частотой ультразвуковой волны, а поэтому различается для низкочастотных и высокочастотных ультразвуковых колебаний.
При распространении ультразвуковых колебаний в среде их интенсивность ослабевает (для многих сред обратно пропорционально квадрату расстояния от источника). Потеря энергии происходит вследствие поглощения ультразвуковых колебаний средой, которое зависит от вязкости и теплопроводности среды. УЗ волны особенно высокой частоты, порядка сотен килогерц, сильно поглощаются воздухом, а также отражаются от поверхности раздела твердой или жидкой среды и газа. Поэтому контакт между источником УЗ и облучаемой средой не должен содержать воздушной прослойки. Из биологических сред наименьшее поглощение ультразвуковых волн характерно для жировых тканей. В мышечной ткани поглощение ультразвука вдвое выше, а в сером веществе мозга – в 2 раза больше, чем в белом. Поглощение ультразвука тканями существенно зависит от частоты ультразвуковых колебаний – растет с увеличением частоты. Поэтому низкочастотный ультразвук поглощается тканями слабее, чем высоко- и среднечастотный, а проникает на значительно большую глубину. В среднем, ультразвук частотой 22-44 кГц может проникать на глубину до 16-24 см, в то время как ультразвук частотой 800 кГц – на 7-9 см.
Распространение ультразвуковых колебаний в среде сопровождается возникновением ряда механических, физических(а также и тепловых) и химических эффектов. К первичным физическим эффектам относят переменное движение частиц в направлении распространения ультразвука, на частицы действует переменное акустическое давление.
Для ультразвука большой интенсивности (~ 10 вт/см2) амплитуды смещения частиц и амплитуды их скоростей относительно невелики, но чрезвычайно велика амплитуда ускорений. Амплитуда ускорений может в десятки тысяч и в сотни тысяч раз превосходить ускорение силы тяжести. Амплитуда давлений может иметь величину нескольких атмосфер.
Распространение ультразвука высокой мощности низкой и средней частоты сопровождается явлением, названным кавитацией. С увеличением частоты ультразвуковых колебаний вероятность возникновения кавитации резко уменьшается, в связи с этим высокочастотный ультразвук оказывается менее опасен для биологических объектов (используется в основном для ультразвуковой диагностики).
При распространении УЗ волн большой интенсивности в жидкости в местах разрежения происходит разрыв сплошности среды - возникает кавитационный пузырек. Образующийся в фазе разрежения газовый пузырек довольно быстро захлопывается под влиянием последующего сжатия. Это явление называют акустической кавитацией. Она довольно эффективно трансформирует относительно низкую среднюю плотность энергии звукового поля в высокую плотность энергии, концентрирующуюся в малых объемах внутри и вблизи от захлопывающегося пузырька. Этим обусловлена роль кавитации в возникновении целого ряда УЗ эффектов (возбуждение люминесценции, инициирование химических реакций, деградация полимеров и биомакромолекул, бактерицидное действие, разрушение животных и растительных клеток и их органелл и т.д.), наблюдаемых в интенсивных УЗ полях.
По современным представлениям механизм биологического действия ультразвука протекает по 3 путям:
1. поглощение УЗ на молекулярном уровне и превращение его энергии в тепло, вызывающее необратимые изменения;
2. рассеяние - процесс, зависящий от соотношения размера объекта и длины волны УЗ;
3. кавитация, приводящая к механическим разрывам в структурах, расщеплению молекул воды (Н2О ® Н + ОН) с образованием реакционно-способных продуктов, которые взаимодействуют с веществами, входящими в состав клеточных оболочек или мембран.
Важно, что результатом кавитационных процессов являются нарушения структуры и полное разрушение структуры биологических объектов: нарушение структуры биомакромолекул ведет к нарушению или потере функции более крупных биообъектов – клеток, органов или организмов. Так, УЗ разрушает многие микроорганизмы, проявляя бактерицидное действие. Поскольку наблюдаемый биологический эффект есть результат взаимодействия физических и биологических факторов, наблюдается зависимость эффективности УЗ от структурных особенностей биологического объекта. Так, при действии УЗ на клетки преобладают механические изменения, а при действии на ткани – основным повреждающим фактором является тепловая энергия. В растворах макромолекул повреждающее действие определяется резонансными факторами и механическим стрессом, появляющимся в результате относительного перемещения молекул и среды, а также благодаря электрохимическим изменениям в самой среде.
... , чем структурные реверберации, что позволяет его зарегистрировать на фоне шумов. Теневой метод позволяют обнаруживать крупные дефекты в материалах, где контроль другими акустическими методами затруднен или невозможен: крупнозернистой аустенитной стали, сером чугуне, бетоне, огнеупорном кирпиче. Однако имеются серьезные недостатки: необходимость двустороннего доступа и малая точность оценки ...
... грамматик предложения, описывающие границу данного объекта. Данный метод положительно работает при описании скелета области в базе данных эталонных объектов в виде одного или нескольких предложений. Приведённые методы распознавания и идентификации находят своё применение в различных системах технического зрения. Они предоставляют возможности создавать гибкие перепрограммируемые или самообучаемые ...
... технологий, вместе взятых [[32]]. Сегодня объем мирового рынка нанотехнологической продукции измеряется в миллиардах долларов (пока этот рынок составляют главным образом новые материалы и порошки, улучшающие свойства материалов), а к 2015 году, по прогнозам западных специалистов, он превысит $1 трлн [[33]]. В недалеком будущем экономическое, военное, социальное и политическое положение развитых ...
... ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты. Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением ...
0 комментариев