2. Введение поправок
Наиболее простой и распространенный случай — введение поправок на известную систематическую погрешность ИК. Аналогичные поправки могут вводиться во всех видах СИ. Алгоритм введения поправки очевиден: из кода, выдаваемого ИК, должен вычитаться код известной систематической погрешности. Поправка на аддитивную систематическую погрешность задается в виде одного числа, а поправка на мультипликативную систематическую погрешность предварительно рассчитывается в соответствии с заложенным алгоритмом с учетом результата измерения соответствующего ИК. Например, поправка на систематическую погрешность коэффициента передачи измерительного канала равна результату измерения, умноженному на относительную систематическую погрешность коэффициента передачи, оцененную экспериментально.
Специфичными для ИИС являются поправки на систематические погрешности, обусловленные взаимным влиянием каналов. Для ИК погрешность, вызванная влиянием другого канала, может быть как аддитивной (например, из-за проникновения сигнала по паразитным каналам связи), так и мультипликативной (например, из-за изменения нагрузки на общий источник питания ПИП или ВИП). Однако рассчитываются эти поправки аналогично поправкам на собственные мультипликативные погрешности в соответствии с алгоритмом, описывающим взаимное влияние каналов, с учетом данных о сигнале в канале, влияние которого компенсируется.
Поправки на систематическую погрешность для каждого отсчета, выдаваемого ИК, являются числами. Однако для разных отсчетов они могут рассматриваться как функции времени или других аргументов. В частности, как следует из определения систематической погрешности [33], она остается постоянной или закономерно изменяется. Если закон изменения известен, то вводимая поправка оказывается переменной. К поправкам в виде функций мы приходим при компенсации взаимного влияния каналов и в некоторых других случаях, например при компенсации влияния внешних факторов.
Как и для других СИ, величины поправок и алгоритмы их расчета определяются на основе теоретических и экспериментальных исследований метрологических характеристик ИК. Например, при питании вторичных преобразователей в виде мостов переменного тока от одного генератора систематическая погрешность будет пропорциональна величине сигнала во влияющем канале. К этому выводу можно прийти из анализа мостовой схемы с учетом внутреннего сопротивления питающего генератора. Величину коэффициента пропорциональности для каждого канала проще определить экспериментально, поскольку применение теоретических методов все равно потребует некоторых числовых данных, которые можно получить только экспериментально. К вопросу о введении поправок мы вернемся при анализе погрешностей измерения.
Более сложным является введение поправок, компенсирующих дополнительную погрешность, вызванную внешними условиями. Наиболее часто вводятся температурные поправки, в частности при линейных измерениях. Величина поправки, вычитаемая из результата измерения, в этом случае рассчитывается по формуле
(2)
где Lизм — результат измерения; t ° и
аи — температура и коэффициент температурного расширения измерительной оснастки, контактирующей с измеряемой деталью;
t° и ад — то же для измеряемой детали.
Для определения поправки необходимо измерить температуры детали и измерительной оснастки, то есть ввести в ИИС два новых ИК. Аналогичные поправки могут вводиться и для компенсации изменения сопротивления резисторов. При этом в зависимости от материала резистора может использоваться линейная или экспоненциальная модель зависимости сопротивления от температуры.
Напряжение, питающее мосты или делители, определяет их чувствительность. Поэтому дополнительный ИК, измеряющий это напряжение, дает возможность автоматически вводить поправку на нестабильность чувствительности ИК, обусловленную нестабильностью питающего напряжения.
Аналогично могут компенсироваться влияния давления, влажности, изменения питания (не обязательно электрического), электрических и магнитных полей и многих других физических факторов. Для измерения влияющих факторов должны использоваться специальные ИК, что не является спецификой ИИС, поскольку при использовании неавтоматизированных СИ поправки определялись с учетом результатов измерения влияющих факторов с помощью других СИ. Алгоритмы введения этих поправок индивидуальны в каждом конкретном случае и определяются в ходе специальных исследований.
Если исследуемые физические величины рассматриваются как единое целое, необходимо одновременное получение их отсчетов. Однако из-за временных сдвигов в ИК отсчеты этих величин xji могут браться в различные моменты времени ty. Для привязки их к одинаковым моментам времени tji можно использовать линейную интерполяцию наблюдаемых функций
(3)
Два последовательных отсчета измеряемой величины, входящих в (3), выбираются таким образом, чтобы tji < tj < tj,i +1.
В принципе для интерполяции в (3) могут использоваться и полиномы более высоких степеней, если отсчеты достаточно разнесены во времени.
Для отдельных областей измерения могут применяться специфичные алгоритмы предварительной обработки, используемые во всех ИИС данной области. Например, при геометрических измерениях измерительный наконечник перемещается по эквидистанте относительно исследуемой поверхности. Эквидистанта — линия (поверхность), все точки которой равноудалены от данной линии (поверхности), то есть они находятся на некоторых нормалях к исследуемой поверхности на равных расстояниях от нее. Эквидистанта к прямой (плоскости) — прямая (плоскость), к окружности (сфере) — окружность (сфера). Во всех остальных случаях форма эквидистанты отлична от формы исходной линии или поверхности.
Поэтому собранный массив данных должен пересчитываться в координаты точек поверхности. Поскольку за счет конечного диаметра измерительного наконечника происходит специфичное сглаживание исследуемой поверхности, полное восстановление исследуемой поверхности не всегда возможно.
При исследовании температуры малых объектов иногда приходится корректировать собранные данные с учетом теплоемкости чувствительного элемента датчика, контактирующего с объектом. При электрических измерениях иногда посредством поправок компенсируется влияние внутреннего сопротивления датчиков. При измерении характеристик радиосигналов на сверхвысоких частотах приходится вводить поправки с учетом коэффициентов отражения. Подобные примеры можно привести для многих областей измерения.
Нелинейность ИК является одним из частных источников систематической мультипликативной погрешности. Поэтому линеаризацию характеристик можно рассматривать как частный случай введения поправок. Однако введение этих поправок базируется на столь специфичном алгоритме, что его рассматривают как самостоятельную процедуру.
Нелинейность любого элемента ИК и всего канала характеризуется максимальным отклонением характеристики от прямой, соединяющей граничные точки рабочего диапазона. Наибольший вклад в нелинейность вносят первичные и вторичные измерительные преобразователи. Однако некоторую нелинейность могут вносить АЦП и каналы связи.
Очевидно, что нелинейность можно устранить, если она стабильна. Только в этом случае вызываемую ею погрешность можно рассматривать как систематическую и компенсировать ее, вводя поправки путем линеаризации. Если вид характеристики преобразования достаточно быстро меняется в процессе эксплуатации ИИС, устранить нелинейность практически невозможно, поскольку вносимая погрешность будет близка к случайной. При медленном изменении формы характеристики, когда ее существенные изменения происходят за недели или месяцы, возможна компенсация ее нестабильности за счет периодического повторения режима линеаризации (настройки).
При аналоговых методах обработки для компенсации нелинейности измерительных преобразователей использовались различные электронные компоненты, работающие на нелинейных участках своих характеристик: лампы, диоды, транзисторы. Таким способом удавалось уменьшить нелинейность в полтора-два раза. Линеаризация проводилась для усредненных характеристик, подстройка для конкретных экземпляров преобразователей была сложна. Поэтому нелинейность измерительных преобразователей являлась основным фактором, ограничивавшим их точность. Ситуация принципиально изменилась с использованием для линеаризации цифровых устройств.
Применяются два основных алгоритма линеаризации:
- аппроксимация характеристики преобразования полиномом (степенным, гармоническим и др.);
- кусочно-линейная аппроксимация.
Оба метода эффективно устраняют нелинейность, если характеристика изменяется достаточно плавно (вторая производная меняет знак в рабочем диапазоне малое число раз). Нелинейность, обусловленная физическими эффектами, заложенными в принцип работы преобразователя, имеет именно такой плавный характер. Неплавная нелинейность обусловлена особенностями конструкции и качеством изготовления. Например, дефекты намотки катушек индуктивных преобразователей приводят к неплавной нелинейности. (Интервал перемещений, в пределах которого происходит изменение знака второй производной, близок к величине шага намотки, то есть составляет несколько сотых долей миллиметра.) Устранить такую нелинейность практически невозможно, поскольку для этого потребуются или полиномы очень высоких степеней, или очень большое число отрезков кусочно-линейной аппроксимации.
Оба метода имеют свои преимущества и недостатки. Однако более широкое применение нашел второй метод, как более простой и более эффективно устраняющий локальную нелинейность.
При первом подходе ищутся параметры функции известной формы (например, степенного полинома), при которых точки (xj; Cj) наименее удалены от этой функции.
Кусочно-линейная аппроксимация (на рис. 4 длина отрезка 1 характеризует нелинейность) заключается в том, что нелинейная характеристика канала заменяется отрезками прямых, проходящих через экспериментально полученные точки (xi; Ci) и (хi+1; Ci+l), где i = 1, п. Обычно число точек равно 6... 11, что соответствует аппроксимации пятьюдесятью отрезками прямых.
Координаты узлов аппроксимации должны быть измерены с погрешностями, в несколько раз меньшими допускаемой погрешности ИК, аналогично тому, как это делается при калибровке или поверке.
С учетом вида аппроксимации характеристики преобразования обратное преобразование, обеспечивающее линеаризацию, также будет линейно-кусочной функцией
(4)
Очевидно, что с увеличением числа линейных отрезков обеспечивается более высокая линейность. Однако при этом возрастают требуемый объем памяти (что не очень существенно) и объем экспериментальных работ по получению исходных данных.
Кусочная линеаризация позволяет уменьшить нелинейность в несколько раз и даже в десятки раз. Благодаря этому, используя датчики, конструкция которых не менялась несколько десятилетий, можно обеспечить значительно более высокую точность измерения. При этом подчеркнем, что в соответствии с рассмотренным алгоритмом производится линеаризация характеристики конкретного экземпляра датчика, а не усредненной характеристики, что устраняет и влияние разброса характеристик.
Аппаратно линеаризация может производиться центральной ЭВМ или специальными микропроцессорными устройствами, входящими в состав ИК и конструктивно объединенными с вторичными преобразователями или с АЦП. Некоторые датчики выпускаются в комплекте с ПЗУ, в котором записаны данные о его характеристике, достаточные для линеаризации.
... аналоговой коррекции энергетической зависимости X и Y преобразования продолжаются только в цифровой форме. Обобщенная структурная схема цифрового канала измерительной информации изображена на рис.8. Рисунок 8. Канал аппаратной цифровой обработки. АЦП Х, Y, Z размещаются в модуле детектора в непосредственной близости от аналоговых источников. Это сводит к минимуму примесь всевозможных помех. ...
... проектируется исходя из решаемых задач и технико-экономических ограничений, а затем полученные результаты могут быть отнесены к конкретному классу. Практическая эффективность этой классификации невелика. 2. Общие принципы построения и применения ИИС Создаваемая ИИС должна обеспечивать достижение поставленных перед ней целей. Эти цели могут быть достигнуты различными способами. Поэтому должны ...
... хранение больших массивов измерительной информации. Следствием этого является схожесть структур, обязательное использование ЭВМ и соответствующего ПМО. Заключение В работе рассмотрены примеры измерительных информационных систем для исследования объектов различной физической природы. Литература 1. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные ...
еоценить значение МП и микроЭВМ при создании автоматизированных средств измерений, предназначенных для управления, исследования, контроля и испытаний сложных объектов. Развитие науки и техники требует постоянного совершенствования средств измерительной техники, роль которой неуклонно возрастает. Основные понятия и определения Понятия и определения, используемые в измерительной технике, ...
0 комментариев