3. С каждым объектом данной категории связана специальная стрелка – единичная, или тождественная, стрелка этого объекта.
Итак, дадим аксиоматическое определение категории.
Категория Ω включает в себя:
1) Совокупность предметов, называемых Ω - объектами
2) Совокупность предметов, называемых Ω-стрелками
3) Операции, ставящие в соответствие каждой Ω-стрелке f Ω-объект dom f (начало стрелки f) и Ω-объект cod f (конец стрелки f). То, что а=domf и b=cod f изображается так: f: a®b
4) Операцию, ставящую в соответствие каждой паре ‹ g, ¦› Ω-стрелок с dom g=cod f Ω-стрелку g˚¦, композицию f и g, с dom (g˚¦)=dom f и cod(g˚¦)=cod g, причем выполняется следующее условие:
закон ассоциативности:
пусть f: a®b
g: b®c
h: c®d
тогда h ˚(g˚¦)= (h ˚g)˚¦.
Закон ассоциативности утверждает, что диаграмма вида -
-коммутативна.
( в теории категорий удобным средством являются коммутативные диаграммы. Диаграмма – это схема, в которой указаны объекты и стрелки между ними. При этом, любые два пути, ведущие по стрелкам из одного объекта в другой, равны. Диаграмма называется коммутативной, если есть несколько путей от одного объекта к другому, то все они приводят к одному и тому же результату. Точнее: диаграмма называется коммутативной, когда все возможные треугольники, составляющие части данной диаграммы, коммутативны. Это означает, что любые два пути стрелок данной диаграммы, начинающиеся в одном и том же объекте и заканчивающиеся в одном и том же объекте, задают в композиции одну и ту же функцию. Диаграммы в теории категорий используются для наглядности изложения.)
5) Сопоставление каждому Ω-объекту b Ω-стрелки 1b: b®b, называемой единичной или тождественной стрелкой, так что выполнен Закон тождества:
для любых Ω-стрелок f:a®b и g:b®c 1b◦f=f и g◦1b=g, т.е. коммутативна диаграмма
1.1. Мономорфные стрелкиОпределение: Стрелка f:a®b в категории Ω называется мономорфной или монострелкой в Ω, если для любой пары g,h: c®a Ω-стрелок из равенства f °g=f ° h следует g=h.
· В произвольной категории композиция g°f является монострелкой, если как f, так и g мономорфны.
Доказательство:
Воспользуемся определением монострелки:
Стрелка g°f:a®c является монострелкой, если для любых стрелок l,m:b®a если (g°f)°l=(g°f)°m, то l=m. Изобразим диаграмму. Очевидно, что требуемое равенство выполняется, т.е. (g°f)°l=(g°f)°m. В любой категории должен выполняться ассоциативный закон. Применяя его, получаем следующее равенство: g°(f°l)=g°(f°m).
g – монострелка Þ f °l=f °m
f – монострелка Þl=m, что и требовалось доказать.
· В произвольной категории, если композиция g °f – мономорфна, то и f – мономорфна.
Доказательство: пусть f: a®b
g: b®d,
l, m: c®a
f – мономорфна, если из равенства f °l=f °m (*)следует, что l=m.
Очевидно, что это равенство выполняется.(см. диаграмму). Учитывая, что domg = cod(f °l) = cod(f °m), применим к равенству (*) стрелку g. Получаем g°(f ° l)=g°(f °m). Далее, по ассоциативному закону:
(g°f)°l=(g°f)°m.
g°f – монострелка Þl=m, что и требовалось доказать.
1.2. Эпиморфные стрелкиОпределение: Стрелка f:a®b называется эпиморфной или эпистрелкой в категории Ω, если для произвольной пары стрелок g,h: b®c из равенства g°f=h°f следует g=h, т.е. если коммутативна диаграмма, то g=h.
· Если g°f-эпистрелка, то g- эпистрелка.
Доказательство: пусть f: a®b
g: b®c,
l, m: c®d
g – эпистрелка, если из равенства l °g=m °g (*)следует, что l=m.
Очевидно, что это равенство выполняется.(см. диаграмму). Учитывая, что codf = dom(l °g) = dom(m °g), применим к равенству (*) стрелку f. Получаем (l ° g)°f=(m ° g)°f. Далее, по ассоциативному закону:
l°(g°f)=m°(g°f).
g°f – эпистрелка Þl=m, что и требовалось доказать.
1.3. ИзострелкиОпределение: произвольная стрелка f: a®b называется изострелкой или обратимой в категории Ω стрелкой, если существует Ω- стрелка g:b®a, такая, что g°f=1a и f°g=1b. На самом деле такая стрелка только одна. Действительно, если предположить, что существует ещё одна такая стрелка g’, то g’=1a°g’=(g°f)°g’=g°(f°g’)=g°1b=g. Стрелка g, когда она существует, называется обратной к f стрелкой и обозначается f -1:b®a. Она определяется условиями: f -1°f=1a, f °f -1=1b.
· Любая изострелка является эпистрелкой.
Доказательство: пусть f: a®b – изострелка, и стрелки g,h: b®c.
Тогда g °f=h °f и существует f -1 . Тогда g = g °1b= g °(f °f-1) =(ассоциативность)= (g °f) °f-1 = (h°f)°f-1=h °(f °f -1)=h °1b=h. Таким образом, f – сократима справа. Ч.т.д.
· Любая изострелка является монострелкой. (доказательство аналогично предыдущему).
· Любая изострелка является бистрелкой (эпи и монострелкой ).
Доказательство: следует из предыдущих двух утверждений.
· Каждая единичная стрелка является изострелкой.
Доказательство: Пусть f: a®a – единичная стрелка. Существует стрелка f –1 : a®a и f –1 °f=1a, f °f –1=1a.Þ f – изострелка. Ч.т.д.
· Если f – изострелка, то f –1 – изострелка.
Доказательство: пусть f: a®b – изострелка. Тогда f –1: b®a. f – изострелка Þ f °f –1=1b, f –1 °f=1a. Þ f –1 – изострелка. Ч.т.д.
· Если f, g – изострелки, то f °g – изострелка, при этом (f °g)- 1 = g–1°f-1
Доказательство: пусть f: b®c, g: a®b. f °g: a®c. f,g- изострелки Þ $ f –1: c®b и $ g –1: b®a Þ$ g –1°f –1 :c®a. Эта композиция является «подозрительной» на обратную к стрелке f °g. Проверим это:
1) (g –1°f –1)°(f °g)=(ассоциативность)=g –1°(f –1°f °g)=g–1°(1b°g)=g–1 °g=1a.
2) (f °g )°g –1° f –1=f °(g °g –1°f –1)=f °(1b°f –1)=f °f –1=1c.
Þ f°g- изострелка и (f °g)-1=g –1°f –1 .Ч.т.д.
... Привлекательность продукции определяется степенью удовлетворения совокупности разноплановых, иногда противоречивых требований; 3. Состав предъявляемых требований, их приоритетность зависит как от вида продукции, так и типа ее потребителя; 4. Конкурентоспособность как экономическая категория имеет релятивистскую природу, так как рассматривается относительно конкретного рынка и конкретного аналога; ...
... , почему именно эти аксиомы оказались настолько успешными и достойными специального внимания. Соответственно самая большая слабость формализма состоит в невозможности объяснить, почему аксиомы теории множеств, предположительно не отражающие никакой реальности, способны доказывать арифметические утверждения, не доказуемые с помощью более финитистских средств. Слабость, которую, как я полагаю, ...
... науки. В основе этой взаимозависимости лежит взаимосвязь всеобщего, являющегося предметом философских наук, и особенного, служащего предметом частных наук. Понимание взаимосвязи философии и частных наук основывается, таким образом, на диалектике категорий всеобщего и особенного (частного). С точки зрения научной диалектики всеобщее существует только через особенное, во всей массе особенных, а ...
... исторических понятий включена в динамическую картину исторического становления современного разума. Но для того, чтобы сопоставить основные исторические понятия и термины базового уровня, нам необходимо избрать и описать кадр такого сопоставления. Этот кадр — семантика социальных категорий. Имена и классы Прежде, чем изложить некоторые элементы семантической теории социальных категорий, следует ...
0 комментариев