4.6 Расчет элементов опор на горизонтальные нагрузки и совместное воздействие горизонтальных и вертикальных нагрузок

Рис. 4.6.1 Схемы к определению давлений на элементы моста и подвижной состав железных дорог от горизонтальной поперечной ветровой нагрузки

4.6.1 Определение давлений на элементы моста и подвижной состав железных дорог от горизонтальной поперечной ветровой нагрузки

Нормативную ветровую нагрузку на элементы моста и подвижной состав, находящийся на мосту определяем по формулам

а) при наличии поезда на мосту:

- на подвижной состав ;

- на пролетное строение ;

- на опору .

б) при отсутствии поезда на мосту:

- на пролетное строение ;

- на опору .

где  - нормативные интенсивности ветровой нагрузки, определяемые по формуле

где  - нормативное значение ветрового давления, принимаемое в соответствии со СНиП 2.05.03-84* в зависимости от ветрового района территории РФ, в котором возводится мост.

Мост возводится в районе города Хабаровска, который находится во III ветровом районе, следовательно .

 - коэффициент, учитывающий изменение ветрового давления опоры, пролетного строения или подвижного состава от уровня грунта или меженной воды.

При , ;

При , ;

- для подвижного состава:

 

где 2 м - высота от головки рельса до центра ветрового давления;  - отметка уровня меженных вод, м.

- для пролетного строения:

 

Где – низ конструкции;


Найдем по интерполяции значение коэффициента :

при ,

при ,

при ,

 - аэродинамический коэффициент лобового сопротивления конструкций мостов и подвижного состава железных дорог (СНиП, прил. 9);

 - для железнодорожного подвижного состава, находящегося на пролетном строении с ездой поверху;

 – для пролетного строения;

 - для опор башенного типа;

Определяем нормативные интенсивности ветровой нагрузки:

- на подвижной состав  

- на пролетное строение  

- на опору

,, - рабочие ветровые поверхности соответственно подвижного состава, пролетного строения и опоры;

на подвижной состав

на пролетное строение

на опору

где  - учитываемая в расчете опоры длина подвижного состава и пролетных строений, м; – высота полосы железнодорожного подвижного состава; – высота пролетного строения от низа до уровня головки рельса; А3=2,8 - площадь проекции тела опоры от уровня грунта или воды на плоскость, перпендикулярную направлению ветра, м2; ,, - коэффициенты сплошности соответственно для подвижного состава, пролетного строения, опоры

Определяем нормативную ветровую нагрузку:

а) при наличии поезда на мосту:

- на подвижной состав:

- на пролетное строение:

- на опору:

б) при отсутствии поезда на мосту:

- на пролетное строение:

- на опору:

4.6.1 Расчет опоры на устойчивость против опрокидывания

Расчет опоры на устойчивость против опрокидывания выполняется отдельно на нагрузки, действующие поперек и вдоль оси моста (рис.2.15).

Проверку опоры на устойчивость против опрокидывания в поперечном направлении производят на воздействие ветровых нагрузок и горизонтальной нагрузки от ударов подвижного состава, которые совместно не учитывают.


Рис.2.10. Схема к расчету опоры на устойчивость против опрокидывания в поперечном направлении при воздействии ветра

Определение расчетных усилий. При наличии поезда на мосту к опрокидывающему моменту относительно точки О от воздействия ветра на пролетное строение и опору добавляется опрокидывающий момент от ветрового давления на подвижной состав. Также увеличивается удерживающий момент относительно точки О от веса подвижного состава. Расчет на устойчивость выполняют для двух случаев загружения: с поездом на мосту и без него. Подвижную временную вертикальную нагрузку принимают как порожний подвижной состав, воздействие от которого определяют в соответствии с нормами [1, п.2,11].

Для сочетания 1. Постоянные нагрузки плюс подвижной состав плюс ветер:

Для сочетания 2. Постоянные нагрузки плюс ветер:

где  - нормативные давления поперечного ветра соответственно на подвижной состав, пролетное строение и опору;  - нормативные давления поперечного ветра соответственно на пролетное строение и опору при отсутствии поезда на мосту;  – плечи относительно точки О соответствующих ветровых нагрузок, м;  - интенсивности нормативных нагрузок соответственно от веса мостового полотна, тротуаров, прогонов, кН/м;  - временная вертикальная нагрузка от порожнего подвижного состава железных дорог [1, п. 2.11];  - коэффициент надежности по нагрузке для порожнего подвижного состава железных дорог [1, п. 1.40*];  - коэффициент сочетаний для нагрузки от порожнего подвижного состава железных дорог [1, п. 2.3];  - длина загружения пролетного строения постоянными и временной вертикальной нагрузками, м;  - нормативная нагрузка от веса опоры, кН;  – расчетная ширина опоры, м;  - коэффициент надежности по нагрузке к ветровой нагрузке [1, п.2.32*];  - коэффициент надежности по нагрузке к весу деревянных конструкций пролетного строения и опоры [1, п.1.40*];  - коэффициент сочетаний для ветровой нагрузки при наличии поезда на мосту [1, п.2.2];  - коэффициент сочетаний для ветровой нагрузки при отсутствии поезда на мосту [1, п.2.2].

Условие устойчивости:

Для опоры ветровые воздействия на подвижной состав, пролетное строение и опору создают относительно оси возможного поворота (опрокидывания) – точки О – опрокидывающий момент . Удерживающий момент  относительно той же точки О создает вертикальное воздействие от подвижного состава, нагрузки от веса пролетного строения и веса опоры.

Опора считается устойчивой против опрокидывания, если выполняется условие:

 

где  - момент опрокидывающих сил относительно оси возможного поворота (опрокидывания) опоры, кН·м;  - момент удерживающих сил относительно той же оси, кН·м;  - коэффициент условий работы для стадии эксплуатации;  - коэффициент надежности по назначению для той же стадии работы.

Для сочетания 1:

Условие выполняется

Для сочетания 2:

Условие выполняется

Вывод: Опора против опрокидывания устойчива.


Заключение

В данной курсовой работе был запроектирован краткосрочный деревянный мост под одну железную дорогу в районе г. Хабаровске. В ходе выполнения работы были получены практические навыки составления варианта моста, подсчету объемов и стоимости работ по варианту моста. Также были получены навыки анализа напряженного состояния элементов моста, выбора расчетных схем при расчете различных элементов моста, сбора нагрузок на рассчитываемый элемент моста и определение расчетных усилий в нем, назначения размеров сечений элементов в соответствии с требованиями норм проектирования, выполнение проверок сечений по предельным состояниям первой и второй групп, анализа результатов расчетных проверок и обеспечения экономичности рассчитываемой конструкции моста.


Список использованной литературы

1. СНиП 2.05.03-84*. Мосты и трубы / Минстрой России. – М.: ГП ЦПП, 1996. - 214 с

2. Проектирование деревянных и железобетонных мостов: учеб. для вузов; под ред. А.А. Петропавловского. – М.: Транспорт, 1978. - 359 с.

3. Гибшман, Е.Е. Проектирование деревянных мостов: учеб. Для вузов / Е.Е. Гибшман. – М.: Транспорт, 1976. – 272 с.

4. Топеха, А.А. Расчет деревянных балочных железнодорожных мостов: учеб. Пособие / А.А. Топеха. – Хабаровск: Изд-во ДВГУПС, 2004. - 100 с.


Информация о работе «Проектирование деревянного моста»
Раздел: Транспорт
Количество знаков с пробелами: 28814
Количество таблиц: 3
Количество изображений: 9

Похожие работы

Скачать
12606
0
0

... 5. СНиП 11- 22- 81*. Стальные конструкции/ Госстрой СССР.- М.: ЦИТП Госстроя СССР, 1990.- 96 с. 6. СНиП 11- 25- 80. Деревянные конструкции/ Госстрой СССР. М.: Стройиздат, 1982.- 66 с. 7. СНиП 2.05.03- 84. Мосты и трубы. Государственный комитет по делам строительства.- М., 1985.- 199 с. 8. СНиП 3.03.01- 87. Несущие и ограждающие конструкции/ Госстрой СССР.- М.: АПП ЦИТП, 1991.- 192 с. 9. СНиП ...

Скачать
60880
0
0

... и форма арочных пролетов придавали средневековым местам своеобразный живописный характер. Декоративная отделка на таких мостах отсутствовала либо была крайне сдержанна. Готика как стиль проявлялась в архитектуре мостов лишь в период позднего средневековья - конец XIY начало ХУ в в., при этом украшались, как правило, расположенные на мостах башни часовни и другие постройки. Например, на мосту ...

Скачать
10260
0
0

... 4 раза длиннее нынешнего (более 200 м.). В 1780-х начинается строительство гранитных стенок набережных Фонтанки по плану Ф.В. Бауэра. В этот же период, а именно в 1783-87, сооружается постоянный Аничков мост (предположительно по проекту Ж.-Р. Перроне) – каменный, трёхпролётный со средним деревянным подъёмным пролётным строением. С 1785 по 1841 Аничков мост представлял знакомую нам композицию с ...

Скачать
25007
1
9

... мосты усиливают в уровне их проезжей части продольными балками или фермами жесткости, распределяющими временную нагрузку и исключающими деформацию проложенных кабелей. Существует также разновидность висячих мостов, в которых проезжая часть поддерживается фермой из прямолинейных канатов – вантов, по названию которых они получили название – вантовые. В современных вантовых мостах используются ...

0 комментариев


Наверх