4.6 Расчет элементов опор на горизонтальные нагрузки и совместное воздействие горизонтальных и вертикальных нагрузок
Рис. 4.6.1 Схемы к определению давлений на элементы моста и подвижной состав железных дорог от горизонтальной поперечной ветровой нагрузки
4.6.1 Определение давлений на элементы моста и подвижной состав железных дорог от горизонтальной поперечной ветровой нагрузкиНормативную ветровую нагрузку на элементы моста и подвижной состав, находящийся на мосту определяем по формулам
а) при наличии поезда на мосту:
- на подвижной состав ;
- на пролетное строение ;
- на опору .
б) при отсутствии поезда на мосту:
- на пролетное строение ;
- на опору .
где - нормативные интенсивности ветровой нагрузки, определяемые по формуле
где - нормативное значение ветрового давления, принимаемое в соответствии со СНиП 2.05.03-84* в зависимости от ветрового района территории РФ, в котором возводится мост.
Мост возводится в районе города Хабаровска, который находится во III ветровом районе, следовательно .
- коэффициент, учитывающий изменение ветрового давления опоры, пролетного строения или подвижного состава от уровня грунта или меженной воды.
При , ;
При , ;
- для подвижного состава:
где 2 м - высота от головки рельса до центра ветрового давления; - отметка уровня меженных вод, м.
- для пролетного строения:
Где – низ конструкции;
Найдем по интерполяции значение коэффициента :
при ,
при ,
при ,
- аэродинамический коэффициент лобового сопротивления конструкций мостов и подвижного состава железных дорог (СНиП, прил. 9);
- для железнодорожного подвижного состава, находящегося на пролетном строении с ездой поверху;
– для пролетного строения;
- для опор башенного типа;
Определяем нормативные интенсивности ветровой нагрузки:
- на подвижной состав
- на пролетное строение
- на опору
,, - рабочие ветровые поверхности соответственно подвижного состава, пролетного строения и опоры;
на подвижной состав
на пролетное строение
на опору
где - учитываемая в расчете опоры длина подвижного состава и пролетных строений, м; – высота полосы железнодорожного подвижного состава; – высота пролетного строения от низа до уровня головки рельса; А3=2,8 - площадь проекции тела опоры от уровня грунта или воды на плоскость, перпендикулярную направлению ветра, м2; ,, - коэффициенты сплошности соответственно для подвижного состава, пролетного строения, опоры
Определяем нормативную ветровую нагрузку:
а) при наличии поезда на мосту:
- на подвижной состав:
- на пролетное строение:
- на опору:
б) при отсутствии поезда на мосту:
- на пролетное строение:
- на опору:
4.6.1 Расчет опоры на устойчивость против опрокидыванияРасчет опоры на устойчивость против опрокидывания выполняется отдельно на нагрузки, действующие поперек и вдоль оси моста (рис.2.15).
Проверку опоры на устойчивость против опрокидывания в поперечном направлении производят на воздействие ветровых нагрузок и горизонтальной нагрузки от ударов подвижного состава, которые совместно не учитывают.
Рис.2.10. Схема к расчету опоры на устойчивость против опрокидывания в поперечном направлении при воздействии ветра
Определение расчетных усилий. При наличии поезда на мосту к опрокидывающему моменту относительно точки О от воздействия ветра на пролетное строение и опору добавляется опрокидывающий момент от ветрового давления на подвижной состав. Также увеличивается удерживающий момент относительно точки О от веса подвижного состава. Расчет на устойчивость выполняют для двух случаев загружения: с поездом на мосту и без него. Подвижную временную вертикальную нагрузку принимают как порожний подвижной состав, воздействие от которого определяют в соответствии с нормами [1, п.2,11].
Для сочетания 1. Постоянные нагрузки плюс подвижной состав плюс ветер:
Для сочетания 2. Постоянные нагрузки плюс ветер:
где - нормативные давления поперечного ветра соответственно на подвижной состав, пролетное строение и опору; - нормативные давления поперечного ветра соответственно на пролетное строение и опору при отсутствии поезда на мосту; – плечи относительно точки О соответствующих ветровых нагрузок, м; - интенсивности нормативных нагрузок соответственно от веса мостового полотна, тротуаров, прогонов, кН/м; - временная вертикальная нагрузка от порожнего подвижного состава железных дорог [1, п. 2.11]; - коэффициент надежности по нагрузке для порожнего подвижного состава железных дорог [1, п. 1.40*]; - коэффициент сочетаний для нагрузки от порожнего подвижного состава железных дорог [1, п. 2.3]; - длина загружения пролетного строения постоянными и временной вертикальной нагрузками, м; - нормативная нагрузка от веса опоры, кН; – расчетная ширина опоры, м; - коэффициент надежности по нагрузке к ветровой нагрузке [1, п.2.32*]; - коэффициент надежности по нагрузке к весу деревянных конструкций пролетного строения и опоры [1, п.1.40*]; - коэффициент сочетаний для ветровой нагрузки при наличии поезда на мосту [1, п.2.2]; - коэффициент сочетаний для ветровой нагрузки при отсутствии поезда на мосту [1, п.2.2].
Условие устойчивости:
Для опоры ветровые воздействия на подвижной состав, пролетное строение и опору создают относительно оси возможного поворота (опрокидывания) – точки О – опрокидывающий момент . Удерживающий момент относительно той же точки О создает вертикальное воздействие от подвижного состава, нагрузки от веса пролетного строения и веса опоры.
Опора считается устойчивой против опрокидывания, если выполняется условие:
где - момент опрокидывающих сил относительно оси возможного поворота (опрокидывания) опоры, кН·м; - момент удерживающих сил относительно той же оси, кН·м; - коэффициент условий работы для стадии эксплуатации; - коэффициент надежности по назначению для той же стадии работы.
Для сочетания 1:
Условие выполняется
Для сочетания 2:
Условие выполняется
Вывод: Опора против опрокидывания устойчива.
Заключение
В данной курсовой работе был запроектирован краткосрочный деревянный мост под одну железную дорогу в районе г. Хабаровске. В ходе выполнения работы были получены практические навыки составления варианта моста, подсчету объемов и стоимости работ по варианту моста. Также были получены навыки анализа напряженного состояния элементов моста, выбора расчетных схем при расчете различных элементов моста, сбора нагрузок на рассчитываемый элемент моста и определение расчетных усилий в нем, назначения размеров сечений элементов в соответствии с требованиями норм проектирования, выполнение проверок сечений по предельным состояниям первой и второй групп, анализа результатов расчетных проверок и обеспечения экономичности рассчитываемой конструкции моста.
Список использованной литературы
1. СНиП 2.05.03-84*. Мосты и трубы / Минстрой России. – М.: ГП ЦПП, 1996. - 214 с
2. Проектирование деревянных и железобетонных мостов: учеб. для вузов; под ред. А.А. Петропавловского. – М.: Транспорт, 1978. - 359 с.
3. Гибшман, Е.Е. Проектирование деревянных мостов: учеб. Для вузов / Е.Е. Гибшман. – М.: Транспорт, 1976. – 272 с.
4. Топеха, А.А. Расчет деревянных балочных железнодорожных мостов: учеб. Пособие / А.А. Топеха. – Хабаровск: Изд-во ДВГУПС, 2004. - 100 с.
... 5. СНиП 11- 22- 81*. Стальные конструкции/ Госстрой СССР.- М.: ЦИТП Госстроя СССР, 1990.- 96 с. 6. СНиП 11- 25- 80. Деревянные конструкции/ Госстрой СССР. М.: Стройиздат, 1982.- 66 с. 7. СНиП 2.05.03- 84. Мосты и трубы. Государственный комитет по делам строительства.- М., 1985.- 199 с. 8. СНиП 3.03.01- 87. Несущие и ограждающие конструкции/ Госстрой СССР.- М.: АПП ЦИТП, 1991.- 192 с. 9. СНиП ...
... и форма арочных пролетов придавали средневековым местам своеобразный живописный характер. Декоративная отделка на таких мостах отсутствовала либо была крайне сдержанна. Готика как стиль проявлялась в архитектуре мостов лишь в период позднего средневековья - конец XIY начало ХУ в в., при этом украшались, как правило, расположенные на мостах башни часовни и другие постройки. Например, на мосту ...
... 4 раза длиннее нынешнего (более 200 м.). В 1780-х начинается строительство гранитных стенок набережных Фонтанки по плану Ф.В. Бауэра. В этот же период, а именно в 1783-87, сооружается постоянный Аничков мост (предположительно по проекту Ж.-Р. Перроне) – каменный, трёхпролётный со средним деревянным подъёмным пролётным строением. С 1785 по 1841 Аничков мост представлял знакомую нам композицию с ...
... мосты усиливают в уровне их проезжей части продольными балками или фермами жесткости, распределяющими временную нагрузку и исключающими деформацию проложенных кабелей. Существует также разновидность висячих мостов, в которых проезжая часть поддерживается фермой из прямолинейных канатов – вантов, по названию которых они получили название – вантовые. В современных вантовых мостах используются ...
0 комментариев