6. Базовый алгоритм структурного синтеза

схем с собственной компенсацией

Выполненные исследования указывают на существование двух принципов собственной компенсации влияния параметров активных элементов на характеристики электронных устройств различного функционального назначения. Создание компенсирующих контуров предполагает соединение дифференциального входа активного элемента с дополнительным входом схемы, обладающим определенными функциональными особенностями. В этой связи для обеспечения однонаправленности передачи сигнала необходимо выполнить условие

, (56)


где  – входное сопротивление схемы со стороны дополнительного входа;  – выходное сопротивление схемы на дифференциальном входе активного элемента.

Приведенное неравенство показывает преимущества схем с «заземленными» входами ОУ. Эти узлы можно рассматривать в качестве дополнительных входов схемы, когда условие (56) выполняется автоматически. В противном случае может оказаться необходимым введение в схему дополнительных активных элементов, обеспечивающих однонаправленную передачу сигнала.

Таким образом, чем выше число «заземленных» элементов схемы, тем выше ее модернизационный ресурс. Кроме этого, как видно из (51), введение дополнительных обратных связей может изменить знак локальных передач ,  и, следовательно, обеспечить при необходимости взаимную компенсацию влияния различных активных элементов.

Полученные соотношения для определенного класса позволяют получить набор функционально-топологических признаков и поэтому существенно формализовать процесс поиска структур с активной компенсацией. Например, для звеньев второго порядка

, , ,

, , , (57)

где  и  – частота и затухание полюса, а  и  – относительные изменения этих параметров.

Тогда для компенсации влияния компонент  необходимо к полиному добавить следующую составляющую:

. (58)

Отсюда

(59)

, (60)

. (61)

Соотношения (60), (61) показывают, что выбором , ,  и знаков  можно обеспечить любой уровень компенсации влияния площадей усиления активных элементов на частоту затухания полюса. Вытекающие из (60), (61) функциональные признаки и правила приведены в табл. 7.

Таблица 7

Правила построения звеньев с активной компенсацией

Компенсируемые параметры

Функционально-топологический

признак

Правило построения схемы

Реализация на выходе одного ли нескольких ОУ функции  (компенсация )

Выходы ОУ через масштабный усилитель с коэффициентом передачи  соединяют с выбранным входом схемы. Возвратное отношение в контуре положительно

Реализация на выходе одного или нескольких ОУ функции  или  (компенсация  или )

Выходы ОУ через масштабный усилитель с коэффициентом передачи

 или

 соединяют с выбранным входом схемы. В первом случае возвратное отношение в контуре положительно, а во втором – отрицательно

Примечание. При одновременной компенсации изменений  и  используется в качестве функционального признака одна из сумм передаточных функций. Если существует свобода выбора, то целесообразно использовать входы того ОУ, чувствительность и площадь усиления которого больше.

Рассмотрим построение на основе изложенного материала звена второго порядка с активной компенсацией влияния площадей усиления на частоту и затухание полюса. Принципиальная схема первоначального варианта приведена на рис. 11 и характеризуется следующими параметрами ():

, , (62)

,, (63)

, , , ,

, . (64)

Приведенные выражения показывают, что значительное расширение диапазона рабочих частот возможно только при компенсации изменения частоты и затухания. Для этого согласно табл. 7 производится анализ передаточных функций на выходах ОУ, что и является первым шагом решения задачи.

Рис. 11. Низкочувствительное ARC-звено Антонио с резистивной нагрузкой без собственной компенсации

Рассматриваемая схема может иметь три специально созданных входа (соответствующие связи на рис. 11 показаны пунктиром). Результаты анализа приведены в табл. 8, из которой следуют и основные четыре этапа синтеза схемы.

При вычислении компонент матриц и векторов необходимо выполнить анализ коммутатора (рис. 3), который в явном виде состоит только из резистивного делителя , и поэтому при заполнении , ,  (число в индексе указывает номер создаваемого входа) необходим анализ отдельных подсхем. Так, для подсхемы , , , , эквивалентной простейшей RC-цепи ( соединен последовательно только с ), к резистору которой подключен пассивный сумматор, входящий в состав коммутатора, можно получить:

. (65)

Аналогично выводятся и другие компоненты , , .

На втором этапе основным является выбор предпочтительного способа подключения дополнительного ОУ. Из табл. 8 видна целесообразность использования функции . Действительно, эта функция через контур обратной связи обеспечивает одновременную компенсацию ,  из соотношения (63) и, следовательно, компенсацию относительных изменений основных параметров, приведенных в формулах (64). Как следует из табл. 7, неинвертирующий вход дополнительного масштабного усилителя должен быть подключен к неинвертирующему входу ОУ (рис. 12 при ). Из результатов третьего этапа синтеза (табл. 8) следует, что такой способ включения дополнительного усилителя хотя и обеспечивает взаимную компенсацию влияния  и , но приводит к заметному (пропорциональному ) изменению затухания полюса

. (66)

Для устранения возникшей погрешности можно, как это видно из результатов второго этапа (табл. 8), образовать дополнительный контур подключением входа сумматора к инвертирующему входу ОУ (рис. 12). В этом случае условия компенсации для частоты полюса практически не изменятся, то есть коэффициент  для , а коэффициенты  и  будут способствовать уменьшению влияния ОУЗ на затухание полюса.


Таблица 8

Синтез звена второго порядка

Этап, использующий соотношения Результаты анализа

1. Формирование матриц и векторов.

Соотношения табл. 1

     

   

     

2. Вычисление набора передаточных функций. Соотношения (13).

Выбор . Соотношения табл. 7

F11 F12 F21 F22 F31 F32
a2 0 0 0 0

a1

a0

0

 

3. Вычисление влияния дополнительного ОУ

, ,

,

На последнем этапе синтеза осуществляется параметрическая оптимизация найденного схемного решения. Для этого составляют математические соотношения для всех . Продемонстрируем это на примере . Первые два слагаемых (табл. 8) вытекают непосредственно из выражения (63) ( определено на первом этапе синтеза). Два вторых слагаемых – это произведение коэффициента передачи масштабного усилителя-сум-матора на соответствующие поправочные коэффициенты. Последнее слагаемое, характеризующее влияние , было найдено на третьем этапе решения задачи.

Коэффициент передачи сумматора определяется следующим образом. За общую точку выберем инвертирующий вход ОУ2, тогда при идеальном ОУ1

. (67)

Аналогично, когда , ,

. (68)

Рис. 12. Низкочувствительное ARC-звено на базе D элемента Антонио с собственной компенсацией

При параметрической оптимизации функция цели может быть различна и составляется из практических соображений. Если необходима компенсация изменений всех параметров с точностью до величины , то из , ,  исключаются слагаемые, пропорциональные , затем из соотношения (57) определяются ,  и находятся приведенные в последней строке табл. 8 условия компенсации.

Рассмотренный пример наглядно иллюстрирует методический аспект синтеза структурных схем на базе принципа собственной компенсации.

В рамках генетического подхода алгоритм синтеза структуры будет содержать следующие базовые составляющие.

Генерация схем с заданным набором функциональных свойств. Принципиально на этом этапе можно не учитывать частотные свойства активных элементов. Однако, как это следует из рассмотренного примера, чрезвычайно большое их влияние может в дальнейшем увеличить активную составляющую общей чувствительности.

Ранжирование набора схем по степени влияния параметров активных элементов и числу степеней свободы. Здесь предпочтение отдается схемам с большим числом неиспользованных (заземленных) входов активных элементов, поэтому последующее применение принципа собственной компенсации может заметно снизить влияние паразитных параметров активных элементов.

Функционально полный анализ схем с целью вычленения локальных передаточных функций и набора  (k – номер дополнительного входа).

Выбор доминирующих по чувствительности активных элементов и образование по изложенной методике дополнительных компенсирующих контуров обратной связи.

Параметрическая оптимизация схемы с целью минимизации влияния активных элементов на основные параметры и характеристики.

Настоящий алгоритм воспроизводит метод усечения и положен в основу дальнейших исследований.

Рассмотрим применение предложенной методики к синтезу малошумящих D-элементов с расширенным частотным диапазоном, которые позволяют потенциально создавать «бездрейфовые» ограничители спектра [5]. Из анализа принципиальных схем устойчивых D-элементов (рис. 6–9) видно, что только в схемах Антонио дрейф нуля определяется входными токами неинвертирующих входов ОУ, которые легко минимизируются применением на входе «алмазных» транзисторов и их эквивалентов.

Так, в схеме Антонио с емкостной нагрузкой дополнительным входом схемы для организации компенсирующего контура обратной связи целесообразно использовать эту емкость. В этом случае дополнительные передаточные функции, будут иметь следующий вид:

, (69)

. (70)

В этом случае при условии  () в соответствии с табл. 4 вблизи частоты среза наблюдается собственная компенсация влияния площадей усиления ОУ на затухание, а относительное изменение частоты полюса примет вид

. (71)

Таким образом, если при реализации дополнительного контура компенсирующей обратной связи выполнить условие

,  (72)

то его действие будет направлено на компенсацию относительного изменения частоты полюса (см. (29)). Необходимое суммирование можно выполнить только на дополнительном активном элементе, представляющем собой неинвертирующий масштабный усилитель, инвертирующий вход которого подключен к инвертирующим входам основных усилителей (рис. 13).

Рис. 13. D-элемент с расширенным частотным диапазоном

Если выполнить дополнительные параметрические условия

, (73)

то вводимые цепи не окажут влияние на основные параметры фильтра, а, как это следует из табл. 3, приращение полинома знаменателя будет иметь следующий вид:

, (74)

что в конечном итоге и обеспечивает повышение качественных показателей преобразователя. Таким образом, при  .

В качестве примера, демонстрирующего общую эффективность пред-ложенного метода синтеза, рассмотрим принципиальную схему ФНЧ 5-го порядка (см. п. 1).


Рис. 14. Прецизионный «бездрейфовый» Чебышевский ФНЧ 5-го порядка с расширенным диапазоном рабочих частот

Результаты моделирования фильтра (ОУ типа 140УД26) при минимизации влияния частоты единичного усиления ОУ в полосе пропускания (0–300 кГц) приведены на рис. 15 и 16.

FL05_BR1

Рис. 15. Амплитудно-частотная характеристика прецизионного фильтра в полосе пропускания


FL05_BR2

Рис. 16. Амплитудно-частотная характеристика прецизионного фильтра в рабочем диапазоне частот


Реальная погрешность АЧХ фильтра в полосе пропускания определяется также стабильностью пассивных элементов схемы (рис. 14). При решении практических задач учет этого фактора может осуществляться через среднеквадратическое значение чувствительности в указанном диапазоне частот. Так, для рассматриваемого примера это значение составляет 2,27 в диапазоне частот от 0 до 300 кГц. Как правило, разумным компромиссом между уровнем влияния пассивных и активных элементов является равенство их вкладов в общую погрешность реализации АЧХ в полосе пропускания.

Библиографический список

1.  Немудров, В.Г. Системы на кристалле. Проектирование и развитие [Текст] / В.Г. Немудров, Г. Мартин. – М. : Техносфера, 2009. – 216 с.

2.  Остапенко, А.Г. Анализ и синтез линейных радиоэлектронных цепей с помощью графов [Текст] / А.Г. Остапенко. – М. : Радио и связь, 2009. – 280 с.

3.  Прокопенко, Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей [Текст] / Н.Н. Прокопенко, А.С. Будяков. – Шахты : Изд-во ЮРГУЭС, 2006. – 230 с.

4.  Прокопенко, Н.Н. Архитектура и схемотехника с собственной и взаимной компенсацией импедансов [Текст] / Н.Н. Прокопенко, Н.В. Ковбасюк. – Шахты : Изд-во ЮРГУЭС, 2007. – С. 325.

5.  Прокопенко, Н.Н. Быстродействующий СВЧ-операционный усилитель с нелинейной токовой обратной связью [Текст] / Н.Н. Прокопенко, А.С. Будяков, Н.В. Ковбасюк // Актуальные проблемы твердотельной электроники и микроэлектроники : труды 10-й Междунар. науч. конф. и школы-семинара. – Таганрог, 2006. – Ч. 2. – С. 161–164.

6.  Прокопенко, Н.Н. Нелинейная активная коррекция в прецизионных аналоговых микросхемах [Текст] / Н.Н. Прокопенко. – Ростов н/Д. : Изд-во СКНЦ ВШ, 2010. – 224 с.

7.  Свирщева, Э.А. Алгоритм и программа синтеза RC-схем с операционными усилителями в дифференциальном включении [Текст] / Э.А. Свирщева, А.И. Минаев // Избирательные системы с обратной связью. – Таганрог, 2008. – Вып. 4. – С. 185–186.

8.  Сигорский, В.П. Проблемная адаптация систем автоматизированного проектирования [Текст] / В.П. Сигорский // Автоматизация проектирования в электронике. – Киев : Техника, 2009. – Вып. 26. – С. 3–14.

9.  Синтез активных RC-цепей. Современное состояние и проблемы [Текст] / под ред. А.А. Ланнэ. – М. : Связь, 2008. – С. 296.

10.  Старченко, Е.И. Мультидифференциальные операционные усилители [Текст] / Е.И. Старченко // Проблемы современной аналоговой микросхемотехники : сборник трудов МНПС. – Шахты, 2007. – С. 35–42.

11.  Тафт, В.А. Спектральные методы расчета нестационарных цепей и систем [Текст] / В.А. Тафт. – М. : Энергия, 2008. – 272 с.

12.  Торговников, Р.А. Приборно-технологическое моделирование SiDe биполярных и МОП-транзисторов структур СБИС [Текст] / Р.А. Торговников // Проблемы разработки перспективных микроэлектронных систем : материалы Всерос. науч.-техн. конф. – Подмосковье, 2009. – С. 173–178.

13.  Фаддеева, В.И. Вычислительные методы линейной алгебры [Текст] / В.И. Фаддеева, Д.К. Фаддеев. – М. : Физматгиз, 2006. – 655 с.

14.  Филаретов, Г.А. Организация структуры критериев в задачах векторной оптимизации радиотехнических цепей и систем [Текст] / Г.А. Филаретов, Л.Б. Шустерман, Т.В. Мазюкевич // Информатика. Сер. Автоматизация проектирования. – 2011. – Вып. 3. – С. 45–54.

15.  Чибизов, Д.Г. Автоматизация процедур поиска решений при структурном синтезе нестационарных ARC-схем с расширенным частотным и динамическим диапазонами [Текст] / Д.Г. Чибизов // Интеллектуальные САПР. Тем. вып. Известия ТРТУ. – 2009. – № 3. – С. 224–228.

16.  Чибизов, Д.Г. Структурный синтез гибридных фильтров Калмана-Бьюси [Текст] : дис. … канд. техн. наук / Чибизов Д.Г. – Таганрог, 2009. – 202 с.

17.  Штойер, Р. Многокритериальная оптимизация [Текст] / Р. Штойер. – М. : Радио и связь, 2007. – 504 с.

18.  Akerberg, D. A versative RC building block with inherent compensation for the finite bandwidth of the amplifier / D. Akerberg, К. Mossberg // IEEE Trans. – 2009. – V. CAS-21. – Р. 75–78.

19.  Applications handbook. Burr-Brown Corp. – 2008. – Р. 425.

20.  Brackett, P. Active compensation for high frequensy effects in op-amp circuits with applications to active RC-filters / Р. Brackett, А. Sedra // IEEE Trans. – 2006. – V. CAS-23, № 2. – Р. 68–72.

21.  Cauer, W. Theory der linearen Weehselstrom-shaltung / W. Gauer // Akademic-Verlag. – 2008. – 770 s.

22.  Design-in reference manual // Analog Devices, Inc. – 2010. Р. 9–3–9-569.

23.  Krutchinsky, S.G. Structurally topological principles of self-compensation in electronic devices / S.G. Krutchinsky, N.N. Prokopenko, E.I. Starchenko // Proceeding ICCSC`04. – Moscow, Russia, 2009. – Р. 26–30.

24.  Goldberd, D. Genetic Algorithms in search optimization and Machine Leorning / D. Goldberd // Addision-Wessley Publishing Company. Inc. – USA, 2009.

25.  Mitra, S.K. Fundamental limitation of active filters / S.K. Mitra, M.A. Soderstrand // Proc. of 4-th colloquim on microwave communication. – Budapest, 2010.

26.  National Semiconductor Application Note OA-11, A Tutorial on Applying OpAmps to RF Applications [Электронный ресурс] / Сайт компании National Semiconductor, September, 2008. – URL : http://www.national.com/an/OA/OA-11.pdf, своб.

27.  Sandberg, I.W. On the theory of linear multiloop feedback systems / I. W. Sandberg // BSTJ. – 2011. – V. 42, № 53. – Р. 355–382.

28.  Soderstrand, M.A. Design of active filters with zero passive Q-sensitivity / M.A. Soderstrand, S.K. Mitra // IEEE Trans. on circuit theory. – 2008. –№ 3.

29.  Vlach, J. The influence of the limited bandwidth of active elements on active filters / J. Vlach // Proc., Nat. Electron Conf, Chicago. III. – 2007. – Р. 449–453.


Информация о работе «Структурный синтез D-элементов и лестничных arc-схем»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 37637
Количество таблиц: 9
Количество изображений: 19

Похожие работы

Скачать
36195
4
29

... точности S должен решаться с учетом реализуемого шага и закона перестройки.   5. Влияние неидеальности электронных ключей на свойства базисных структур   При построении ЦУП в качестве коммутаторов чаще всего используются МДП ключи (рис. 19, 20). Рис. 19. Принципиальная (а) и эквивалентная (б) схемы i-й ветви ЦУП Рис. 20. Принципиальная (а) и эквивалентная (б) схемы i-й ветви ЦУП ...

Скачать
30540
16
0

... Сравнительная характеристика различных реализаций синтезируемого фильтра. 17 Литература..................................................................................................................................................................... 18 Задание 1.    Представить данные на синтез частотно-избирательного фильтра в графической форме с использованием нормированной ...

0 комментариев


Наверх