1. Включає тільки Парето-оптимальні точки, тобто жодна з безумовно гірших точок не може належати цій поверхні.
У багатьох випадках вагова поверхня є повністю визначеною і неперервною в усьому діапазоні значень показників якості . У таких випадках вагова поверхня збігається з Парето оптимальною множиною.
Отже, при використанні розглянутих методів, а також їхніх модифікацій векторна оптимізаційна задача зводиться у математичному відношенні до розв'язання множини скалярних оптимізаційних задач з урахуванням різного роду обмежень.
У загальному випадку при розв'язанні оптимізаційних задач (5), (7) варіюється оператор системи , тобто як структура , так і параметри системи. При цьому можуть бути використані методи варіаційного числення, функціонального аналізу, теорії статистичних рішень, теорії інформації. При фіксованій структурі системи задача синтезу зводиться до задачі оптимізації вектора параметрів . Ця задача у ряді випадків може розв'язуватися методами лінійного, нелінійного чи динамічного програмування.
Якщо знайдена множина Парето порівняно вузька, то за оптимальне рішення може бути прийнята люба Парето-оптимальна оцінка і відповідна їй система. У таких випадках можна вважати, що відношення строгої переваги збігається з відношенням на множині векторних оцінок, а тому . При цьому часто і не вдаються до пошуку всієї множини Парето-оптимальних систем, а зразу вибирають один із Парето-оптимальних варіантів.
Проте часто множина є занадто обширною. Це свідчить, що відношення та хоча і зв'язані аксіомою Парето, але не збігаються. Для звуження множини Парето-оптимальних оцінок слід використати умовний критерій переваги (УПК), який зводиться до задання деякої скалярної цільової функції. УКП може бути заданий після одержання додаткової інформації та введенні різного роду умов.
При цьому постає запитання: чи має сенс виконувати синтез на основі безумовного критерію переваги - критерію Парето, якщо на заключному етапі все ж доводиться вводити умовний критерій переваги. В обґрунтування доцільності пошуку Парето-оптимальних варіантів систем з використанням БКП на початкових етапах оптимального проектування зазначимо таке:
1. БКП дає змогу знайти всі Парето-оптимальні системи, тобто відкинути безумовно гірші варіанти системи.
БКП дає змогу знайти потенціальні (найкращі можливі) значення кожного із показників якості і зв'язок між ними.
3. Методи відшукання Парето-оптимальних систем зводяться у математичному відношенні до оптимізації скалярних цільових функцій, тобто зводять розв'язання задачі векторного синтезу до деякої множини задач скалярного синтезу.
4. У виродженому випадку БКП дає змогу знайти єдину найкращу систему.
5. У невиродженому випадку знаходження Парето-оптимальних систем часто приводить до однієї структури системи, але з різними параметрами.
6. Навіть тоді, коли на заключному етапі синтезу для вибору єдиної системи доводиться вводити УКП, то краще вводити різного роду умовності на більш пізньому етапі синтезу.
5 Методи звуження множини Парето-оптимальних рішень
Формальна модель задачі Парето-оптимізації не містить інформації для вибору єдиної альтернативи. При цьому множина допустимих варіантів системи лише звужується до множини Парето шляхом виключення безумовно гірших варіантів за відношенням . Проте для наступних етапів проектування системи, як правило, має бути обраний єдиний варіант системи. Тому виникає необхідність звуження множини Парето-оптимальних рішень із залученням додаткової інформації про відношення . Така інформація з'являється в результаті різностороннього аналізу структури і параметрів Парето-оптимальних варіантів системи, багатовимірних діаграм обміну показників якості системи, відносної важливості показників якості, порівняльного аналізу одержаних варіантів системи між собою.
Отримана при цьому додаткова інформація може бути використана для побудови скалярної цільової функції , оптимізація якої на множині Парето-оптимальних рішень приводить до вибору єдиного оптимального варіанта системи
. (11)
Загальна вимога до функції зводиться до того, щоб вона була монотонною (зростаючою чи спадною) по кожному зі своїх аргументів.
Існують як об'єктивні, так і суб'єктивні підходи до побудови такої функції. У ряді випадків на основі розгляду призначення системи, що проектується у складі більш складної надсистеми (комплексу), об'єктивними методами може бути встановлено взаємозв'язок показників якості системи з якимось показником якості надсистеми у вигляді відповідної функції . Проте у більшості випадків об'єктивно ввести таку функцію не вдається і доводиться вдаватись до її побудови значною мірою суб'єктивними методами. Розглянемо деякі з них.
Вибір оптимальних рішень з використанням функцій цінності. Одним із широко використовуваних методів звуження множини Парето-оптимальних рішень є використання скалярної функції цінності (корисності), оптимізація якої веде до вибору одного з оптимальних варіантів системи. Числову функцію називають функцією цінності для відношення строгої переваги , якщо для довільних оцінок , у просторі нерівність має місце тоді і тільки тоді, коли . Припустимо, що відношення строгої переваги задовольняє аксіому Парето. При цьому із нерівності випливає відношення , що означає , тобто функція цінності , є зростаючою за відношенням . Якщо існує функція цінності , то оптимальна оцінка знаходиться шляхом максимізації цієї функції на множині Парето
. (12)
Тобто відшукання оптимальної оцінки зводиться до розв'язання задачі скалярної оптимізації функції багатьох змінних .
При цьому можуть бути побудовані адитивна, мультиплікативна, полінійна функції цінності.
Процедура утворення функції цінності інколи називається згорткою векторного критерію .
Операція згортки можлива, якщо:
- частинні критерії кількісно сумарні по важливості, тобто кожному з них відповідає певне число , яке визначає його відносну важливість відповідно до інших критеріїв;
- частинні критерії є однорідні, тобто кількісно порівнюються в одній вимірності.
Існують різноманітні форми подання узагальненого скалярного критерію та вибору відповідних оптимальних рішень. Зокрема, це такі способи згортки частинних критеріїв:
- формується узагальнений критерій, чисельник якого складає добуток критеріїв, які підлягають максимізації, а знаменник - добуток критеріїв, які підлягають мінімізації;
- формується узагальнений критерій з використання елементів теорії адитивної корисності, тобто підсумовування частинних критеріїв за певною вагою коефіцієнтів вибору чисельника і знаменника;
- формується узагальнений критерій відносно всіх частинних критеріїв.
Узагальнена функція цінності може набирати такого вигляду
, (13)
де - одновимірні функції цінності, що характеризують цінність системи за -м показником якості; - шкалюючі коефіцієнти.
Задача побудови функції (13) зводиться до оцінки коефіцієнтів , вибору виду функцій , перевірки їх незалежності за перевагою , перевірки узгодженості побудованої функції цінності. У ряді випадків може бути використана функція цінності (13) у вигляді
. (14)
При цьому використовуються різні методи одержання додаткової інформації про значення коефіцієнтів . Зокрема, це добре розроблені методи експертних оцінок. Вони зводяться до опитування вибраної групи експертів про цінність одержаних Парето-оптимальних варіантів системи, відносну важливість показників якості та інше. Існують добре розроблені методики врахування одержаної інформації, які реалізовані у методі Сааті.
Інколи для вибору єдиного варіанту обмежуються так званою пороговою оптимізацією: найбільш вагомий критерій піддається оптимізації, інші включаються до системи обмежень. Слід зауважити, що існує також багато інших принципів та підходів до вибору єдиного варіанту з використанням скалярних критеріїв оптимальності. Фактично співвідношення (14) визначає байесовий детермінований критерій оптимальності. За умов невизначеності про умови вибору рішень використовує методи теорії ігор. Такі ситуації вибору проектних рішень при створенні систем часто називають «іграми з природою». Для прийняття рішень вишукують найкращу стратегію, з використанням критерія Вальда, критерія Севіджа, критерія Гурвіца, критерія Лапласа та інших.
Вибір оптимальних рішень на основі теорії розмитих множин. Цей підхід базується на тому, що через апріорну невизначеність поняття «найкращий варіант системи» неможливо визначити точно. Можна вважати, що це поняття являє собою розмиту множину і для оцінки системи можуть бути використані основні положення теорії розмитих множин. У загальному випадку розмита множина на множині задається функцією належності : , яка зіставляє з кожним елементом дійсне число на інтервалі . Це число називається ступенем належності елемента розмитій множині . Чим воно ближче до , тим вищий ступінь належності. Функція є узагальненням характеристичної функції множин, яка набуває лише два значення: - при і - при . У випадку дискретних множин використовується запис розмитої множини як множини пар .
Згідно з цими основними положеннями кожний показник якості системи може задаватися у вигляді розмитої множини , де - функція належності конкретного -го показника якості розмитій множині найкращого значення.
Такий запис окремого показника якості має високу інформативність, оскільки дає уяву про фізичну природу показника якості, конкретне його значення і цінність відносно найкращого (екстремального) значення, що характеризує функція належності. Універсальна форма функції належності, яка може бути використана як скалярна цільова функція, має такий вид
. (15)
Перевагою такої цільової функції є те, що вибором параметра може бути реалізовано широкий клас функцій від лінійної адитивної за умови , до сугубо нелінійної при .
Вибір оптимального варіанту при строго впорядкованих за важливістю показниках якості. Інколи для замовника системи за результатами аналізу Парето-оптимальних варіантів, а також їх БДО виявляється бажаним одержати якомога більше значення одного з показників якості, наприклад , навіть за рахунок погіршення інших показників якості. Це означає, що показник є важливішим порівняно з іншими показниками якості.
Можливий також випадок, коли весь набір показників якості , строго упорядкований за важливістю, тобто показник більш важливий, ніж показники , показник більш важливий, ніж показники і т.д. Цьому відповідає ситуація, коли при порівнянні оцінок систем використовується лексикографічне відношення. Наведемо означення цього відношення та особливості використання при виборі єдиного варіанту системи.
Нехай є два вектори оцінок , . Лексикографічне відношення має місце тоді і тільки тоді, коли виконується одна з таких умов
,
, (16)
............................
.
Для лексикографічне відношення збігається з відношенням на підмножині дійсних чисел. При виконанні відношення кажуть, що вектор лексикографічно більший за вектор .
Якщо використовується лексикографічне відношення при виборі єдиної системи, то це означає, що із пари оцінок (і відповідних їм систем) перевага віддається тій оцінці (системі), в якої перша компонента вектора (тобто оцінка показника якості ) більша, незалежно від співвідношення по інших компонентах вектора. Якщо перші компоненти оцінок однакові, то перевага віддається тій оцінці (системі), в якої більша друга компонента вектора (оцінка показника якості ). Наступні компонентам вектора можуть при цьому значно програвати відповідним компонентам вектора .
Аналогічні висновки мають місце при рівності перших двох компонент, трьох компонент і так далі до компонент векторів і . У таких випадках стверджують, що компоненти , тобто оцінки показників якості системи строго упорядковані за важливістю.
У визначенні лексикографічного відношення важливу роль відіграє порядок перерахування показників якості. Зміна нумерації показників якості приводить до другого лексикографічного відношення. Крім згаданих вище методів побудови скалярної цільової функції і вибору варіанта з множини Парето-оптимальних, існує і багато інших. Вибір підходящого методу визначається вихідними даними та типом конкретної оптимізаційної задачі. Але якби-то не було, оптимальні варіанти системи слід шукати серед Парето-оптимальних розв'язків задачі. Тобто етап Парето-оптимізації є обов'язковим при проектуванні систем з урахуванням сукупності показників якості.
... . Таким чином, вивчення особливостей поведінки чотирикомпонентних сумішей полімерів є важливим і тема роботи актуальна. Метою дипломного проекту є створення програмного забезпечення для оптимізації складу чотирикомпонентних нанонаповнених сумішей полімерів, яке дозволить визначати полімерні композиції для отримання виробів з покращеними властивостями. Для досягнення поставленої мети потрібно вирі ...
... ічно зростають показники ефективноств їх діяльності. Науково-дослідні інститути закордоном працюють над новими моделями, які раніше чи пізніше пристосуються до практики управління. Щоб якимось чином впорядкувати та зробити більш наочним питання про сфери застосування тих чи інших моделей і методів наведемо таблицю (див. табл.7).Таблиця 7: Сфери застосування моделей і методів обгруниування управлі ...
... ємозв'язків характеристик, що містяться в ній, з метою отримання прогнозних моделей. Методи аналогій направлені на те, щоб виявляти схожість в закономірностях розвитку різних процесів і на цій підставі проводити прогнози. Випереджаючі методи прогнозування будуються на певних принципах спеціальної обробки науково-технічної інформації, що реалізовують в прогнозі її властивість випереджати розвиток ...
... Розробка структурної схеми системи вимірювання температури 2.1 Вибір оптимального варіанту структурної схеми В даному пункті курсової роботи розробляється структурна схема інформаційно-вимірювальної системи вимірювання температури. Буде розглянуто три варіанта структурних схем, порівняно їх між собою за шістьма критеріями, коротко охарактеризовано кожну та обрано оптимальну структурну схему ...
0 комментариев