2.1.2 Призначення і область застосування

Під накопичувачем інформації розуміється сам пристрій запису, зберігання і відтворення інформації, а носій інформації – це предмет, на який проводиться запис інформації. Накопичувач на жорстких магнітних дисках призначений для тривалого зберігання, читання, записи даних. Жорсткий диск є одним з важливих частин персонального комп'ютера. Існування сучасних персональних ЕОМ без вінчестера неможливо представити. Область застосування накопичувача надзвичайно широка.

2.1.3 Технічні характеристики

Особливість конструкції у винчестерных НМД є нероздільне конструктивне виконання основних взаємодіючих вузлів: блоку магнітних головок з механізмом позиціонування і магнітного диска. Така конструкція забезпечує високу точність позиціонування і малі (0,5 мкм) зазори між поверхнею циліндра і головкою. Весь блок розміщується в корпусі, що герметизується, з фільтрацією повітря до частинок не більше 0,3 мкм.

Що випускаються в даний час винчестерні НМД мають малі габарити, широкий діапазон об'єму, швидкість обміну і вартість, можуть практично задовольнити запити будь-якої системи.

Розроблені спочатку для крупних ЕОМ, останніми роками ці НМД сталі популярними як ВЗП для міні - ЕОМ. Цьому неабиякою мірою сприяло зменшення габаритних розмірів пристроїв при збереженні високих технологічних параметрів.

Розглянемо параметри, яки характеризують накопичувачі на жорстких магнітних дисках. Швидкодію накопичувачів можна оцінити по декількох параметрах.

Середній час пошуку. Під середнім часом пошуку (вимірюється в мілісекундах) розуміється середньостатистичний час, протягом якого магнітні головки (конкретного типу носіїв) переміщаються з одного циліндра на іншій. Як середній час пошуку в паспортних даних накопичувача часто указують часовий інтервал, необхідний для переміщення магнітних головок на відстань, рівну одній третині ширини зони запису даних на диску. Середній час пошуку залежить, головним чином, від конструкції механізму приводу головок.

Середній час доступу. Відмінність від середнього часу пошуку полягає в тому, що враховується запізнювання (середній час) при переміщенні магнітної головки до шуканого сектора на доріжці. Величина запізнювання рівна половині періоду обертання диска. Таким чином, середній час доступу рівно сумі середнього часу пошуку і часу запізнювання. Із зростанням швидкості обертання дисків не тільки зменшується запізнювання, але і зростає швидкість передачі даних.

Швидкість передачі даних. Швидкість передачі даних є інтегральною характеристикою при оцінці загальної продуктивності комп'ютера і залежить від характеристик елементів конструкції термоблоку накопичувача і параметрів контролера.

Час безвідмовної роботи. В описах накопичувачів указується такий параметр, як середньостатистичний час між збоями, характеризуюче надійність

пристрої. Значення цього параметра звичайно коливається від 20 000 до 50000 ч., але може складати і 1млн ч. Ці значення є розрахунковими з відомою вірогідністю, а для отримання статистично достовірних даних про надійність пристрою необхідно протестувати групу однакових накопичувачів і підрахувати кількість відмов за час, як мінімум в два рази перевищуюче очікуване значення середньостатистичного часу між збоями. Цей показник далеко не завжди відповідає реальній надійності пристрою.

Місткість накопичувача. В даний час більшість фірм виробників IDE- і SCSI- накопичувачів указує в паспортних даних форматовану місткість, оскільки жорсткі магнітні диски випускаються тими, що вже відформатували. Ця величина відрізняється від неформатованої місткості накопичувача. Як правило, об'єм пам'яті вимірюється в двійкових одиницях, а місткість накопичувача – в десяткових або в двійкових одиницях.

Вартість накопичувачів. Відношення місткість/вартість накопичувачів продовжує знижуватися у міру розвитку технології створення магнітних дисків.

2.1.4 Опис структурної схеми

2.1.4.1 Фізичний принцип роботи пристрою

Робота накопичувачів на жорстких і гнучких магнітних дисках ґрунтується на тому загальновідомому факті, що при пропусканні через провідник електричного струму навкруги нього утворюється магнітне поле. Це поле впливає на що опинилося в ньому феромагнітну речовину (носій). При зміні напрямі струму полярність магнітного поля також змінюється. Справедливо і зворотне твердження: при дії на провідник змінного магнітного поля в ньому виникає електричний струм. При зміні полярності магнітного поля змінюється і напрям електричного струму. Завдяки такій взаємній "симетрії" електричного струму і магнітного поля з'являється можливість записувати дані на магнітні носії, потім їх прочитувати.

Головка запису/відтворення в будь-якому дисковому накопичувачі складається з U – образного сердечника з феромагнітного матеріалу і намотаної на ньому обмотки, по якій може протікати електричний струм. При пропусканні струму через обмотку в сердечнику (магнітопроводі) головці створюється магнітне поле. При перемиканні напряму протікаючого струму полярність поля також змінюється.

Магнітне поле, наведене в сердечнику, частково розповсюджується в оточуюче простір дякуючи наявності зазора "пропиляного" в підставі букви U. Якщо поблизу зазора розташовується інший феромагнетик (робочий шар носія), те магнітне поле локалізується в ньому, оскільки подібні речовини володіють меншим магнітним опором, ніж повітря. Магнітний потік, перетинаючий зазор, замикається через носій, що приводить до поляризации його магнітних частинок (доменів) у напрямі дії поля. Напрям поля і, отже, залишкова намагніченість носія залежить від полярність електричного струму в обмотці головки. Жорсткі магнітні диски звичайно робляться на алюмінієвій або скляній підкладці, на який наноситься шар феромагнітного матеріалу. Робочий шар, в основному, складається з окислу заліза з різними добавками. Магнітні поля, створювані окремими доменами на чистому диску орієнтовані випадковим чином і взаємно компенсуються на будь-кому скільки-небудь протяжній (макроскопічному) ділянці поверхні диска, тому його залишкова намагніченість рівна нулю. Якщо ділянка поверхні диска при проходженні поблизу зазора головки піддається дія, домени шикуються в певному напрямі, і їх магнітні поля більше не компенсують один одного.

В результаті у цієї ділянки диска з'являється залишкова намагніченість, яку можна згодом знайти. Виражаючись науковою мовою, залишковий магнітний потік, формований даною ділянкою поверхні диска, стає відмінним від нуля.

Зі всього вищесказаного можна зробити висновок: в результаті протікання змінного струму імпульсної форми в обмотці головки запису/відтворення на диску, що обертається, утворюється послідовність ділянок з різної по знаку (напряму) залишкової намагніченості. Найважливішими з погляду подальшого відтворення записаної інформації виявляються ті зони, в яких відбувається зміна напряму залишкового магнітного поля, або просто зони зміни знака (flux transition). При записі кожного біта на диску формується послідовність ділянок з різною намагніченістю, і, відповідно, певним розташуванням зон зміни знака. Ділянка доріжки запису, на якій може бути записаний одна зона зміни знака називається осередком переходів (transition сеll) або просто бітовим осередком. Геометричні розміри такого осередку залежать від тактової частоти сигналу запису і швидкості, з якою переміщаються один щодо одного головка і поверхня диска. При записі окремих бітів даних або груп в осередках формується характерний "узор" із зон зміни знака, залежний від способу зберігання інформації. Це зв'язано з тим, що в процесі перенесення даних на магнітний носій кожний біт (або група бітів) за допомогою спеціального кодуючого пристрою перетвориться в серію електричних сигналів, що не є точною копією послідовності імпульсів.

При відтворенні записаних даних мають значення зони переходу між ділянками поверхні диска з різною залишковою намагніченістю. Зв'язаний це з тим, що по законах електромагнітної індукції ЕДС в контурі (в даному випадку — в обмотці головки) виникає тільки при зміні магнітного потоку, що перетинає контур. Це означає, що при русі головки уздовж ділянки з постійною намагніченістю напруги на її виходах не буде. Оскільки сигнал запису представляє з себе прямокутні імпульси, та напруга на виході головки запису/відтворення матиме вид коротких різнополярних викидів, що виникають в ті моменти, коли вона перетинає зону зміни знака. Полярність цих викидів залежить від того, в якому напрямі міняється намагніченість - від умовно позитивного рівня до негативного або навпаки. Амплітуда сигналу, що поступає з головки пі прочитуванні, дуже мала, тому питання про шуми і перешкоди стоїть вельми гостро. Для його посилення використовуються високочутливі пристрої, що входять до складу дисководів. Після посилення сигнал поступає на декодуючі схема, які призначені для відновлення даних, ідентичного тому, що поступав на накопичувач при проведенні запису.


Информация о работе «Моделювання задач масового обслуговування ЕОМ»
Раздел: Информатика, программирование
Количество знаков с пробелами: 93795
Количество таблиц: 7
Количество изображений: 8

Похожие работы

Скачать
20320
0
6

....................................... 23 Додаток Г – результати роботи програми............................................................. 24 Вступ Темою данної курсової роботи є моделювання процесу надходження до ЕОМ повідомлень від датчиків та вимірювальних пристроїв. Це обумовлено тим, що постійне впровадження системи збирання та обробки інформації вимагає збільшення кількост ...

Скачать
30775
0
2

... їх обробки на ЕОМ можна представити у вигляді СМО. Тобто, модель заданої системи є дискретною стохастичною системою. Виконання імітаційного моделювання вказаного процесу надходження повідомлень від датчиків до ЕОМ та їх обробки на ЕОМ потребує проведення моделювання (імітацію) всіх подій, які можуть статись – отримання інформаційних повідомлень від датчиків, вхід і звільнення пам'яті ЕОМ, втрату ...

Скачать
79093
54
9

... кта та алгоритму його функціонування, або алгоритму процесу, а також уявлення опису на різноманітних мовах здійснюється взаємодією людини і ЕОМ. Система автоматизованого проектування - це комплеск засобів автоматизації проектування, взаємозв’язаних з необхідними підрозділами проектної організації або колективом спеціалістів (користувачем системи), які виконують автоматизоване проектування. САПР ...

Скачать
73749
1
1

... модель, яка опосередковує відносини між об’єктом, який вивчається, та суб’єктом, який пізнає (системним аналітиком). Головним гальмом для практичного застосування математичного моделювання в економіці є проблема наповнення розроблених моделей конкретною та якісною інформацією. Точність і повнота первинної інформації, реальні можливості її збору й опрацювання справляють визначальний вплив на виб ...

0 комментариев


Наверх