Курсовая работа на тему: Автоматизация судовых паротурбинных установок
Задание на курсовую работу:

Номер варианта: № 1

 

Δt, с м1, мм м2, мм мmax, мм Pmax, Па
13 65 26 70 5 ∙ 105

Разгонная характеристика, снятая через Δt, с:

Pп, ∙ 105 Па 5 4,15 3,5 3,25 2,87 2,64 2,49 2,3 2 2 2 2
Смоделировать систему автоматического регулирования давления пара в пароводяном барабане с пропорциональным гидравлическим регулятором, а также определить и построить диаграммы показателей качества переходных процессов в зависимости от настроечных параметров регулятора.
Оглавление автоматизация паротурбинная установка регулятор пар Введение Первый раздел

1.  Назначение и описание объекта регулирования

2.  Особенности эксплуатации объекта регулирования

3.  Необходимость и целесообразность автоматизации объекта

регулирования

4.  Возмущающие и регулирующие воздействия. Требования к качеству регулирования

5.  Вывод уравнения динамики объекта регулирования

6.  Определение коэффициентов уравнения динамики объекта регулирования

Второй раздел

1.  Выбор регулятора. Принципиальная, функциональная и структурная схемы регулятора. Устройство и принцип действия

2.  Уравнение динамики и статики регулятора. Динамическая и статическая характеристики регулятора

3.  Уравнение динамики и статики САР. Статические характеристики САР

4.  Устойчивость САР

5.  Исследование динамики САР

6.  Вопросы эксплуатации САР

Вывод

Список используемой литературы


Введение

Широкая автоматизация процессов управления судовой энергетической установкой - важнейшее средство не только поддержания высоких технико-экономических показателей ее эксплуатации, но и существенного сокращения числа обслуживающего персонала, создания благоприятных условий для выполнения производственных функции, и, следовательно, повышения эффективности труда персонала.

Работы в области автоматизации процессов управления СЭУ вообще и паротурбинными установками в частности в отечественном судостроении практически были начаты сразу после окончания второй мировой войны и ведутся непрерывно в возрастающем объеме. Первый этап характеризовался разработкой систем автоматического регулирования рабочего процесса в различных элементах установки — созданием так называемых локальных автоматических систем. В результате были созданы средства и схемы автоматического регулирования котельных установок, конденсатных систем, деаэрационных установок, систем снабжения греющим паром потребителей, систем всережимного и ограничительного регулирования частоты вращения вала ГТЗА и др.

На первом этапе работ по автоматизации судовых паротурбинных установок были разработаны теоретические основы расчета, наладки, испытания и эксплуатации автоматических систем, что нашло отражение в многочисленных публикациях работ по этому вопросу и способствовало существенному сокращению продолжительности проектирования и наладки систем и повышению надежности их действия. Второй этап развития автоматизации судовых технических средств вообще и их энергетических установок в частности характерен комплексным подходом к решению этой проблемы. Этот подход заключается в том, что автоматизация охватывает комплекс функций в сфере управления установкой, включая контроль параметров, обработку и представление результатов контроля оператору в наиболее удобной для него форме, конечные режимы работы установки, исходя при этом из условия достижения максимальной эффективности ее эксплуатации. Ряд специфических задач автоматизации возник в связи с переходом к централизованному управлению установкой из изолированного поста, в том числе и из рулевой рубки, и к безвахтенному ее обслуживанию.

Весьма актуальными для современного судостроения и перспективных судов становятся новые задачи управления автоматическая оптимизация стационарных режимов работы установки в связи с изменением условий ее эксплуатации и характеристик входящего в ее состав энергетического оборудования, диагностический контроль состояния энергетического оборудования с представлением оператору обобщенных параметров, характеризующих ухудшение этого состояния, и др. Такой контроль позволит обнаружить отклонения от нормального состояния оборудования и предотвратить аварийные ситуации на ранних стадиях их возникновения. Это повысит надежность действия установки и сократит продолжительность ремонта ее оборудования.

Комплексный подход к решению проблемы автоматизации процессов управления заключается также и в том, что объекты и средства автоматизации рассматриваются как составные части единой автоматической системы независимо от степени их конструктивного единства. Исходя из этого, должны быть, согласованы статические и динамические характеристики средств и объектов управления. Только в этом случае будут созданы необходимые условия для нормального функционирования автоматической системы.


Первый раздел

1.  Назначение и описание объекта регулирования

Котельная установка паротурбинного судна состоит из одного или нескольких паровых котлов, вспомогательных механизмов, трубопроводов, теплообменных аппаратов и воздуховодов. Назначение котельной установки — производство пара в необходимом количестве с заданными параметрами при возможно меньших удельных расходах топлива. При этом должна быть обеспечена высокая надежность.

Заданные значения параметров (давление Pр и температура перегрева ) определяют располагаемую потенциальную энергию пара, поэтому от точности поддержания их зависит экономичность работы потребителей пара.

Экономичность сжигания топлива в топках котлов зависит главным образом от точности поддержания оптимального соотношения расходов топлива и воздуха, которое характеризуется коэффициентом избытка воздуха .

Надежная работа котельной установки может быть обеспечена при обязательном условии удержания уровня воды Н в пароводяных барабанах котлов в определенных заданных пределах, подаче топлива и воздуха в топки в соответствии с количеством и параметрами вырабатываемого пара.

Автоматика современной судовой котельной установки обычно состоит из систем автоматического регулирования топливосжигания, питания котлов водой, температуры перегретого пара, аварийной защиты и предупредительной сигнализации по срыву факела в топке, прекращению подачи воздуха в топку, повышению давления пара, отклонению уровня воды за заданные пределы.

Судовым котлом называют устанавливаемый на судне теплообменный аппарат, в котором энергия органического топлива преобразуется в энергию пара или воды, используемую для нужд судна. В соответствии с принятой классификацией судовые котлы различают по ряду признаков.

По назначению котлы делят на главные и вспомогательные. Главным называют судовой котел, производящий, пар для главных двигателей, вспомогательного оборудования котла, технологических общесудовых и хозяйственно-бытовых потребителей. Вспомогательный котел предназначен для обеспечения паром или горячей водой вспомогательного оборудования, технологических, обще судовых и хозяйственно-бытовых потребителей.

Требования, предъявляемые к вспомогательным паровым котлам, следующие: минимальные масса и габариты, автоматизация управления и защиты, простота и надежность в эксплуатации, высокая экономичность, хорошая маневренность, т. е. возможность быстрого перехода с одного режима работы на другой. Последние два требования в большей степени относятся к ГПК, а также к ВПК, обеспечивающим работу турбогенераторов, турбоприводов и другого оборудования с высокими маневренными характеристиками.

Все паровые котлы (ПК) разделяются на две основные группы:

водотрубные и газотрубные. В водотрубных ПК газы омывают трубы снаружи, а вода и пар движутся внутри труб, в газотрубных ПК наоборот — газы движутся внутри труб, а вода и пар омывают их снаружи.

В зависимости от организации движения воды и пароводяной смеси паровые котлы могут быть с естественной циркуляцией и с принудительной циркуляцией. В ПК с принудительной циркуляцией специальный насос создает необходимый напор для преодоления сопротивления движению воды и пароводяной смеси. Все газотрубные ПК относятся к паровым котлам с естественной циркуляцией. Они имеют вертикальное или горизонтальное расположение труб.

Паровые котлы, у которых часть парообразующей поверхности работает как водотрубная, а другая — как газотрубная, называются газоводотрубными.

Основные характеристики ВПК следующие; паропроизводительность D — количество производимого пара в единицу времени, кг/с; рабочее давление пара р — избыточное давление в пароводяном коллекторе (сепараторе), МПа; температура перегретого пара на выходе из пароперегревателя tп.п.°С; температура питательной воды на входе в экономайзер или в пароводяной коллектор (сепаратор) при отсутствии экономайзера tп.в. °С;

расход топлива В, кг/с; коэффициент полезного действия (КПД) этта, представляющий собой отношение полезно используемой теплоты к теплоте, которая выделяется при полном сжигании топлива, израсходованного за тот же промежуток времени, в долях единицы или в процентах; масса ПК без воды (сухая масса) Gд и с водой Gд+Gв, кг.

Водотрубные вертикальные вспомогательные паровые котлы с естественной циркуляцией являются самыми распространенными, особенно на морских судах. Некоторые из них выполняются с развитыми поверхностями нагрева, т. е. кроме парообразующих имеются и иные поверхности нагрева, другие ПК имеют только парообразующую поверхность нагрева.

Изображенный на рис. 1. водотрубный вертикальный паровой котел состоит из пароводяного коллектора 5, верхняя часть которого заполнена паром (эта часть называется паровым пространством). Нижняя часть пароводяного коллектора 5 вместе с водяным коллектором 10 и соединяющими их трубами 7, 8, 11 заполнена водой — эта часть называется водяным пространством,

Поверхность раздела парового и водяного пространств называется зеркалом испарения, уровень которого обозначается на всех схемах знаком у. Трубы 8 обычно располагаются вплотную друг к другу и образуют сплошной боковой экранный ряд (или просто экран); относительный шаг (отношение расстояния между осями двух соседних груб в ряду, называемые шагом S1, к диаметру трубы d) для такого ряда равен единице. Перед вводом в коллектор трубы 8 разводятся и образуют два ряда с относительным шагом S1/d=2. Трубы 11 составляют многорядный притопочный парообразующий пучок. Величина шага S1 в пучке является очень важным параметром, от которого зависит скорость газов, что в конечном итоге определяет тепловую напряженность в ПК.

Необогреваемые трубы 7, расположенные за сплошным экранным рядом труб 8, называются опускными. По ним парогенераторная вода из пароводяного коллектора 5 опускается вниз в коллектор 10 и далее поступает в трубы 8 и 11, Эти трубы обогреваются. и на внутренних стенках труб образуются пузырьки пара, которые вместе с водой поднимаются вверх; поэтому трубы 8 и 11 называются подъемными. Суммарная наружная поверхность всех подъемных труб составляет парообразующую поверхность нагрева ВПК.

При выходе из подъемных труб паровые пузыри проходят через слой воды и зеркало испарения в коллекторе 5 и попадают в его паровое пространство. Неиспарившаяся котловая вода смешивается в коллекторе 5 с непрерывно поступающей питательной водой (ПВ) и снова участвует в естественной циркуляции по описанной схеме.

Пространство, ограниченное передней 17 и задней 15 стенками, экранными трубами 8 и поверхностью, проходящей через оси труб первого ряда пригоночного пучка, называется топкой. Длина топки определяется размером Lт. Такую же длину имеют все остальные газоходы ВПК, где располагаются конвективные поверхности нагрева,

Топочное устройство 9, расположенное на передней стенке, состоит из форсунки 19, куда поступает топливо (Т), и воздудонаправляющего аппарата 18, через который в топку проходи необходимый для сгорания топлива воздух. В топке сгорает топливо и образуются продукты сгорания, имеющие высокую температуру, которые, двигаясь по газоходам ВПК, последовательно обогревают все поверхности нагрева и на выходе из котла имеют температуру tух.

За притопочным парообразующим пучком располагается пароперегреватель. Насыщенный пар (НП) из пароводяного коллектора 5 поступает во входной коллектор пароперегревателя и, проходя по трубам 12, перегревается. Из выходного коллектора перегретый пар (ПП) направляется к потребителям.

Рис. 1.1.1 Водотрубный вертикальный ВПК с естественной циркуляцией

За пароперегревателем располагаются так называемые хвостовые поверхности нагрева: экономайзер и воздухоподогреватель. Питательная вода в количестве, равном суммарному количеству отбираемого потребителями пара, питательным насосом подается во входной коллектор экономайзера, Из него вода поступает в параллельно включенные трубы 13, где подогревается, но не доводится до кипения. Из выходного коллектора экономайзера вода через питательный клапан 16 направляется в пароводяной коллектор.

Последним по ходу газов является воздухоподогреватель, который состоит из труб 14, закрепленных в нижней и верхней трубных досках 1. Газы проходят внутри труб. Снаружи трубы омываются воздухом (В), подаваемым вентилятором. Нагретый воздух поступает к топочному устройству.

Все стенки ВПК представляют собой прочный металлический каркас, к которому крепятся коллекторы, листы обшивки, покрытые теплоизоляционными материалами (на схемах заштрихованы). Обычно делают двойные стенки. Пространство между ними заполнено воздухом, подаваемым в воздухонаправляющий аппарат и далее в топку.

Передняя и задняя стенки топки и газоходов в районе парообразующего пучка и пароперегревателя с внутренней стороны выкладываются огнеупорным кирпичом. Такая кладка называется футеровкой.

Уровень воды и давление пара в пароводяном коллекторе контролируют с помощью водоуказательного прибора 6 и манометра 3. Для защиты ВПК от повышения давления выше допустимого служит предохранительный клапан 4.

Воздушный тракт котла состоит из комплекса оборудования и устройств для приема атмосферного воздуха, его подогрева. транспортировки и подачи в топку. Газовый тракт начинается в топке, проходит через парообразующие ПН, ПП, ЭК, ВП и заканчивается дымовой трубой. Воздушный и газовый тракты соединены между собой последовательно и образуют газо-воздушный тракт.

На ВПК устанавливают различную запорную арматуру: клапаны 2 для отключения пароперегревателя и разобщения ПК с потребителями, клапаны для продувки и др.

Развитие хвостовых поверхностей нагрева связано с усложнением конструкции, увеличением габаритов, массы и стоимости ВПК, а также с увеличением аэродинамического сопротивления движению воздуха и газов и расходов энергии на его преодоление. Поэтому ВПК, предназначенные для теплоснабжения судна, обогрева жидкого груза и работы паровых насосов, выполняют без хвостовых поверхностей и пароперегревателя; они имеют только парообразующую поверхность. Главное преимущество их заключается в простоте конструкции, компактности и более высокой надежности в работе (повышенный расход топлива, который имеет место при более низких значениях КПД, не имеет существенного значения в тепловом балансе всей энергетической установки).

2.  Особенности эксплуатации объекта регулирования

Одними из основных регулируемых величин котла как объекта регулирования являются давление пара и уровень воды в пароводяном барабане. К регулированию этих параметров предъявляются высокие требования, так как их изменение в больших пределах влияет не только на технико-экономические показатели котельной установки в целом, но также на безопасность её работы и обслуживающего персонала. Нарушение этих требований может привести к серьёзной аварии и угрозе человеческой жизни. Итак, перечислим некоторые особенности эксплуатации котла с точки зрения показателей качества. В переходных режимах АСР должна поддерживать заданное давление пара, которое при изменении нагрузки котла от максимальной к минимальной в течение не менее 30 с не должно вызывать подрыва предохранительного клапана. Поскольку этот клапан настраивают на срабатывание при давлении рпр = 1,05 рн , где рн – номинальное давление в котле, то при сбросе нагрузки котла отклонение давления пара не должно превышать Dр=0,04 рн . При повышении нагрузки от минимальной к максимальной допускается несколько большая величина отклонения давления пара, а именно Dр=(0,1¸0,15) рн , поскольку оно определяется главным образом вскипанием воды в котле и, как следствие повышением уровня воды в барабане за пределы видимой части водомерной колонки. Давление пара в указанных пределах должно сохранятся при изменении расхода пара из котла со скоростью не более 1,5 % секунду при увеличении нагрузки и 3 % в секунду при сбросе нагрузки.

Автоматизация питания котлов водой не влияет на их коэффициент полезного действия, но имеет важнейшее значение для надежности эксплуатации энергетической установки и существенно облегчает ее обслуживание. В судовых котлах с естественной циркуляцией процесс регулирования питания в конечном счете сводится к поддержанию уровня воды в пароводяных барабанах в заданных пределах. Обычно отклонения уровня от заданного не должны превышать ± (50—100) мм.

При нарушении питания котлов водой уже через 1—2 мин отклонение уровня может превысить допустимое и вызвать серьезную аварию. Так, повышение уровня воды в пароводяном барабане увеличивает влажность пара, поступающего в пароперегреватель, и может привести к забросу воды в него и даже в турбину, что приведет к аварии пароперегревателя или турбины. Снижение уровня может нарушить режим циркуляции воды в котле, что повлечет за собой деформацию или пережог водогрейных и экранных труб.

Несколько слов о других особенностях эксплуатации СПК как объекта регулирования. Совершенство процесса горения топлива определяет экономичность работы котла и способствует защите окружающей среды от загрязнения. Подача топлива и воздуха в топки котлов должна осуществляться в определенном соотношении: как недостаточная, так и чрезмерная подача воздуха снижает КПД котла. Сжигание топлива с коэффициентом a избытка воздуха, отличным от оптимального, увеличивает суммарные потери теплоты с уходящими газами и химическим недожогом (q2 + q3). Увеличение a повышает температуру точки росы, интенсифицируя коррозию низкотемпературных поверхностей нагрева, а уменьшение приводит к дымлению и повышенному загрязнению поверхностей нагрева. Для конкретных условий топливосжигания имеется определенное значение a, соответствующее минимуму потерь теплоты. Значение a для современных котлов незначительно и диапазон его изменений, в пределах которого обеспечивается бездымное горение топлива, мал. Поэтому соотношение подач топлива и воздуха в топку должно поддерживаться АСР с высокой точностью, обеспечивающей максимальный КПД котла или минимум потерь теплоты.

Также важно при проектировании АСР котла учитывать и такие особенности как:

1.  давление топлива в напорной топливной магистрали не должно откланяться за пределы превышающиеDрт=(0,08¸0,1) ртн , где ртн – номинальное давление топлива;

2.  наибольшее отклонение температуры подогрева топлива лимитируется качеством распыливания топлива форсунками и не должно превышать 5-8°С;

3.  продолжительность любого переходного процесса в системе регулирования процесса горения не должна превышать 60-90 с.

3. Необходимость и целесообразность автоматизации объекта регулирования

 

Степень автоматизации котельных установок различна в зависимости от их назначения. В главных котельных установках полностью автоматизируется процесс генерации пара на стационарных режимах с любой паропроизводительностью и на всех переходных режимах, процесс защиты установки в аварийных ситуациях и процесс контроля параметров. Главные котельные установки, следовательно, оборудуют системами автоматического регулирования всего рабочего процесса, защиты и контроля параметров. Если на судне установлена система централизованного контроля параметров всей паротурбинной установки (ПТУ), то автоматизация контроля параметров котельной установки обычно осуществляется этой системой.

Автоматизация процессов регулирования и защиты полностью исключает необходимость участия человека в сфере управления этими процессами и поэтому действительно сокращает число обслуживающего персонала, позволяет более точно поддерживать заданные значения регулируемых величин и повышает надежность действия котельной установки. Поэтому стоимость используемых для этой цели технических средств быстро окупается достигаемым технико-экономическим эффектом.

Вспомогательные котлы небольшой паропроизводительности при работе их на дизельном и тяжелом топливе, как правило, оборудуются системой дистанционно-автоматизированного управления конечными режимами (ввода котла в действие и вывода его из действия).


Информация о работе «Автоматизация судовых паротурбинных установок»
Раздел: Промышленность, производство
Количество знаков с пробелами: 51728
Количество таблиц: 5
Количество изображений: 14

Похожие работы

Скачать
55219
0
7

... как перевозка газа под высоким давлением требует стальных танков с большой толщиной стенок. Кроме того, благодаря искусственному охлаждению значительно сокращаются потери газа. Судовые холодильные установки, как и энергетические, в отличие от стационарных имеют ряд особенностей в отношении общего расположения охлаждаемых помещений, размещения оборудования и выбора его типа. При проектировании и ...

Скачать
35486
9
5

... и малогабаритным). Такому требованию наиболее полно отвечает ГТУ, которая к тому же относительно проста в обслуживании. ЗАКЛЮЧЕНИЕ. Из рассмотренных выше материалов видно, что судовые газотурбинные установки, обладая определенными преимуществами перед другими типами, в тоже время обладают очень существенным недостатком-низкой экономичностью. В сочетании с малыми массогабаритными показателями, ...

Скачать
24208
0
2

... утилизации паровой турбиной степень утилизации теплоты может быть существенно увеличена, поскольку дополнительная мощность, получаемая в паровой части установки, не имеет ограничений с точки зрения ее использования. Такая установка (рис. 1) получила название газопаротурбинной (ГПТУ). Рис. 1. Схема газопаротурбинной установки Рабочий процесс в паровой турбине на режимах частичной мощности ...

Скачать
80294
0
5

... до последнего времени была ориентирована на докритическое давление p0=16,3 – 18 МПа. За рубежом на паросиловых тепловых электростанциях редко встречается столь глубокий расчетный вакуум, как на наших ТЭС – при tохл.в=12 0С, хотя это существенно усложняет создание мощных турбин. Только в странах бывшего СССР длительное время эксплуатировались быстроходные пятицилиндровые турбины насыщенного пара ...

0 комментариев


Наверх