1.1.3 Производство медного купороса из медного лома
Производство медного купороса из медного лома делится на три стадии:
1) получение гранулированной меди; 2) получение раствора сульфата меди;
3) кристаллизация и сушка медного купороса.
Получение гранулированной меди
Медный лом («тяжелую» медь) плавят в медеплавильной печи. Проволоку, стружку, высечку и т. п. («легкую» медь) перед подачей в печь брекетируют. Плавку лома ведут обычно в пламенных печах из огнеупорного шамотного кирпича, отапливаемых мазутом.
Плавка меди в печи продолжается, в зависимости от количества примесей, 4,5 – 6 часов. После удаления шлака в «кипящую» медь забрасывают серу, затем ее выпускают тонкой струей в воду, находящуюся в гранулировочном бассейне. Он представляет собой бетонированную яму, высотой 1,6 м и диаметром 2,5 м.
В бассейн помещают стальную корзину с дырчатыми стенками высотой 1 м и диаметром 1,6 м; в последней собираются гранулы. При подъеме корзины с гранулированной медью вода стекает через отверстия в стенках корзины. Образующиеся гранулы имеют диаметр 5 – 15 мм. Вес 1 л гранул не должен превышать
2 кг. 1 кг таких гранул имеет поверхность до 1500 см2.
Получение раствора сульфата меди
Гранулированную медь загружают в натравочную башню, высотой около 6 м, диаметром 2,5 м. Башня изготовлена из листовой стали, внутри футерована кислотоупорным кирпичом и диабазовыми плитками. На высоте 0,5 – 0,9 м от дна в башне имеется ложное днище, лежащее на колосниковой решетке из стальных балок, опаянных свинцом. На ложном днище находится слой меди, высоту которого поддерживают периодическими загрузками на уровне 0,25 м от крышки башни. Под крышкой помещена турбинка, с помощью которой медь непрерывно орошается смесью серной кислоты с маточным раствором. Количество находящейся в башне меди составляет 22 – 28 т.
В башне происходит одновременно окисление и растворение меди. Эти процессы идут с выделением тепла, достаточным для повышения температуры до необходимого уровня, то есть до 70 – 850С. Для окисления меди в башню под колосниковую решетку вдувают воздух в смеси с паром. Пар подают для нагревания воздуха. Вдувание холодного воздуха вызвало бы охлаждение щелока и выделение из него кристаллов медного купороса, что привело бы к закристаллизовыванию нижнего слоя гранулированной меди. Подачей пара регулируют и температуру в башне. Уходящая из нее паро-воздушная смесь выбрасывается в атмосферу. С 1 м3 натравочной башни можно получить в сутки более 1,3 т. медного купороса.
Орошающий щелок имеет температуру 55 – 600С и содержит 20 – 30 % CuSO4 ∙ 5 H2O, и 12 – 19 % свободной H2SO4. Оптимальная плотность орошения натравочной башни, равная 1,5 – 2,1 м3/(м2 ∙ ч), обеспечивает образование на поверхности медных гранул очень тонкой жидкостной пленки, через которую кислород диффундирует к меди с достаточной скоростью. При большей плотности орошения [4 – 5 м3(м2 ∙ ч)] происходит снижение производительности башни, которое происходит после кратковременного ее возрастания, башня как бы «вымывается».
Вытекающий из натравочной башни горячий щелок (74 – 760С) представляет собой почти насыщенный раствор медного купороса – он содержит 42-49 % CuSO4 ∙ 5 H2O и 4 – 6 % свободной H2SO4. Этот щелок подают центробежным насосом из хромоникелевой стали во вращающийся кристаллизатор непрерывного действия с воздушным охлаждением раствора. Смесь кристаллов медного купороса с маточным раствором через сборник с мешалкой поступает в центрифугу из нержавеющей стали, где кристаллы, отжатые от маточного раствора, промываются водой. На центрифугирование поступает пульпа с соотношением Т: Ж от 1: 2 до 1: 1,5. Отфугованный продукт, содержащий 4 – 6 % влаги и 0,15 – 0,2 % кислоты, высушивают в барабанной сушилке воздухом при 90–1000С. Маточный раствор и промывную воду после смешения с серной кислотой возвращают в производственный цикл.
В маточном растворе происходит постепенное накопление примесей, все больше загрязняющих продукт. Содержащийся в медном купоросе сульфат никеля можно удалить с достаточной полнотой при однократной перекристаллизации. Для удаления FeSO4 необходима многократная перекристаллизация. Получение медного купороса с содержанием 99,9 % CuSO4 ∙ 5 H2O однократной перекристаллизацией из раствора, насыщенного при 700С, возможно при содержании в нем не более 0,3 % NiSO4 и не более 0,15 % FeSO4.
Если в растворе больше 40 г./л FeSO4, то количество железа в продукте больше 0,4 %, то есть выше нормы, допускаемой ГОСТом для продукта III сорта. Из растворов, содержащих больше 100 – 120 г./л FeSO4, выделяются смешанные кристаллы железного и медного купоросов с характерной сине-зеленой окраской.
Содержание железа в кристаллах медного купороса можно уменьшить предварительным окислением Fe2+ в Fe3+. Окислителем может служить воздух (длительный барботаж), азотная кислота, перекись водорода и др. Степень очистки повышается в 2 – 4 раза при добавке к раствору незначительного количества HF (плавиковой кислоты), что приводит к образованию фторидных комплексов Fe3+. Установлено также, что при усилении перемешивания в процессе кристаллизации получаются кристаллы с меньшим содержанием железа, но и размеры их уменьшаются. Присутствие ионов никеля также уменьшает размеры кристаллов, а мышьяка – увеличивает.
На производство 1 т. кристаллического медного купороса расходуют: 0,27 – 0,29 т. металлической меди и 0,39 – 0,40 т. серной кислоты (100 %).
На заводе имени Войкова общие затраты тепла на производство медного купороса составляли 0,76 мгкал на 1 т. продукта. Расход тепла распределяется следующим образом. В натравочную башню через инжекторы вводится 47 % тепла, на подогрев воздуха в калориферах сушильного агрегата затрачивается 26 % тепла и 27 % тепла расходуется на подогрев раствора в сборниках, на разогрев мазута в цистернах и т. д. Количество тепла, выводимого с паро-воздушной смесью, больше тепла, вводимого с паром вследствие дополнительного парообразования, обусловленного выделением тепла реакцией. Поэтому вместо паро-воздушной смеси можно вдувать в башню теплый воздух из кристаллизатора с добавкой 20 – 25 % пара от обычного количества, при температуре смеси, исключающей закристаллизовывание нижнего слоя гранул в башне.
Ввод пара в натравочную башню может быть и вовсе исключен при осуществлении процесса с рециркуляцией паро-воздушной смеси. Отходящую из башни паро-воздушную смесь с температурой ~ 800С направляют при помощи вентилятора из нержавеющей стали под ложное дно башни. При осуществлении процесса по такой схеме возможно введение в цикл газообразного кислорода, что значительно интенсифицирует растворение меди.
Отходом производства медного купороса являются илы, скапливающиеся в резервуарах с производственными растворами. Количество илов составляет 1 – 2 % от перерабатываемой меди. Состав их различен; они могут содержать до 8,5 % Ag2O, до 5 % Bi2O3, 0,05 – 0,1 % Au, Pt, Pd. Такие илы могут быть переработаны гидрометаллургическими методами для извлечения из них ценных металлов.
Предложено получать медный купорос из натравочного щелока добавкой к нему серной кислоты (башенной, купоросного масла, олеума или SO3) до содержания свободной H2SO4 60 % и более. При этом быстро осаждается мелкокристаллический белый безводный сульфат меди, примеси же остаются в растворе. CuSO4 отфуговывают и растворяют в чистом маточном растворе медного купороса, из которого кристаллизуется CuSO4 ∙ 5 H2O. Кислый щелок после осаждения безводного CuSO4 возвращается на растворение меди. После накопления в нем значительного количества ценных примесей (никель, цинк, серебро и др.) их можно извлечь. Преимущество этого способа – в простой и быстрой кристаллизации медного купороса без затраты тепла и холода и высокой чистоте продукта.
Можно вообще отказаться от выпуска пятиводного сульфата меди и выпускать безводный продукт, концентрация меди в котором больше (39,8 % вместо 25,5 % в CuSO4 ∙ 5 H2O). Производство и транспорт его будут дешевле, хотя он и потребует более тщательной упаковки из-за гигроскопичности. Впрочем, даже при небрежной упаковке на поверхности белого порошка появится лишь синеватая окраска вследствие гидратации влагой воздуха, но это не ухудшит качества продукта, который предназначен для растворения в воде. Однако, во избежание слеживания, упаковка должна быть герметичной.
Очистка сточных вод, сбрасываемых в водоемы из производств медного купороса и других медных солей, от ионов меди может быть осуществлена на 70 – 90 % с помощью сульфата алюминия. Выделяющаяся при гидролизе сульфата алюминия гидроокись алюминия адсорбирует ионы меди.
... 14,2 16,0 11 Сульфаты, мг/дм3 56 49 61 48 60 57 12 Микробиологический тест, кол./мл - - - - - - 13 Скорость коррозии, мм/год 0,10 0,16 0,17 0,09 0,12 0,15 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 3.1. Усовершенствование метода водоподготовки производства этилбензол-стирола реагентами фирмы «Nalco» Вода является основным охлаждающим агентом, используемым во всех отраслях ...
... ходом процесса. Через 3 минуты внесите в одну из пробирок раствор хлорида натрия. Что вы наблюдаете? Проведите анализ опытов а) и б). Глава 2. Методика изучения растворов. Теория растворов – одна из ведущих теорий курса химии. Причины важности темы кроется не только в том, что она имеет большое практическое значение, но и прежде всего ...
... 145 761 138 892 162 142 169 012 дек.05 169 012 147 915 166 203 187 300 2. МАРКЕТИНГОВАЯ, ПРЕДПРИНИМАТЕЛЬСКАЯ И КОММЕРЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОАО «РОДНИКИ - ТЕКСТИЛЬ» 2.1 Анализ конкурентов Конкуренция - состязательность хозяйствующих субъектов, когда их самостоятельные действия эффективно ограничивают возможность каждого из них односторонне воздействовать на общие условия обращения ...
... из темного стекла, закрывают корковой пробкой с хлоркальциевой трубкой и хранят в темном месте, так как на свету в нем образуются перекиси, вызывающие взрывы. ЭКСПЕРТИЗА РЫБЫ И РЫБНЫХ ПРОДУКТОВ Рыбу и рыбную продукцию принимают по количеству и качеству партиями. Партией считается определенное количество продукции одного наименования, способа обработки и сорта, одного предприятия-изготовителя, ...
0 комментариев