1. Сформируем лицевую панель в соответствии с методическим указанием к лабораторной работе.

Далее в окне Block Diagram добавим недостающие элементы: структуру For Loop и создадим элемент гистограммы. После чего соединим все элементы надлежащим образом. Установим количество отсчетов равным 100 и запустим моделирование.

Произведем вычисление максимальной относительной ошибки вычисления вероятности для различного количества отсчетов N:

100,

1000,

10000,

100000

по следующей формуле: dмакс = | pi – ni/N |макс/ pi = | piN – ni|макс/ piN.

N=100

dмакс = | 10 –15|/ 10=0.5

N=1000

dмакс = | 100 –124|/ 100=0.24

N=10000

dмакс = | 1000 –945|/ 1000=0.065

N=100000

dмакс = | 10000 –10129|/ 10000=0.0129

Считается, что N(количество экспериментов) и m(количество разрядов) должны находить в следующем соотношении:

m = 3,3lgN + 1

Такая взаимосвязь объясняется тем, что при увеличении количества разрядов необходимо увеличивать количество отсчетов. Иначе гистограмма распределения будет изрезанной и не позволит судить о распределении случайной величины с хорошей точностью.

2. Генерирование случайной последовательности с законом распределения, отличным от равномерного, методом обратной функции.

Скопировали структуру For Loop – генератор равномерно распределенной случайной последовательности. В переключателе вариантов установили “Нелинейное преобразование”. В образовавшееся пустое поле вставили скопированную структуру For Loop. Внутри структуры For Loop cобрали блок-схему программы по формуле u = s(-2ln(1 - x))1/2.

Установили значение параметра в соответствии с вариантом – 0.5 и количество отсчетов – 1000.

Запустили моделирование. Составим таблицу зависимости ni(x), pi(x),:

x 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

ni

87 194 243 198 137 90 38 9 2 2

pi

0.087 0.194 0.243 0.198 0.137 0.09 0.038 0.009 0.002 0.002

0.087 0.281 0.524 0.74 0.859 0.949 0.987 0.996 0.998 1

3. Генерирование случайных последовательностей сложением равномерно распределенных случайных последовательностей (количество складываемых случайных величин – от 2 до 6).

Добавим еще 6 вариантов: “Сумма двух равномерных”, “Сумма трех равномерных ”, “Сумма четырех равномерных ”, “Сумма пяти равномерных”, “Сумма шести равномерных ”, “Нормированная сумма шести равномерных”.

Для каждого варианта соберем соответствующие схемы в структуре Case.

1)Сумма двух равномерных:


2) Сумма трех равномерных

3)Сумма четырех равномерных

Полученные результаты объясняются тем, что происходит сложение первых и вторых моментов случайных величин. Т.е. при увеличении суммы на одно слагаемое мат ожидание увеличивается на 0.5 (значение мат. ожидания для равномерной случайной величины диапазона 0-1) и десперсия так же увеличивается на 1 (значение дисперсии для равномерной случайной величины диапазона 0-1).

4. Определение близости закона распределения нормированной суммы шести равномерно распределенных случайных величин к нормальному закону.

В окнах Block Diagram и Front Panel добавим новые элементы, необходимые для решения поставленной задачи:



Список литературы:

 

1.  Н.А. Виноградова, Я.И. Листратов, Е.В. Свиридов. «Разработка прикладного программного обеспечения в среде LabVIEW». Учебное пособие – М.: Издательство МЭИ, 2005.

2.  http://www.automationlabs.ru/

3.  http://digital.ni.com/

4.  http://www.labview.ru/

5.  http://ru.wikipedia.org/


Информация о работе «Синтез частотных характеристик линейных систем автоматического регулирования»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 9655
Количество таблиц: 4
Количество изображений: 12

Похожие работы

Скачать
17601
12
18

...   Рис. 6 Рис. 7 Схема моделирования показана на рис. 8. Рис.8 Исследование устойчивости для удобства сравнения проводится на трех моделях, отличающихся структурой или параметрами.   2.Оптимальные линейные САР Задача оптимального синтеза линейной системы авторегулирования при случайных воздействиях заключается в определении такой структуры и параметров системы, при ...

Скачать
21045
0
1

... уравнений и даже не определении выходного процесса по заданному входному. Хотя это достаточно важный для теории автоматического управления вопрос, основной целью настоящего раздела является введение центрального для классической теории понятия частотной характеристики и, далее, передаточной функции. Затем, с использованием этих понятий можно обсудить вопросы определения выходного процесса по ...

Скачать
14962
2
11

... частот, то переходная характеристика будет колебательной. Переходная характеристика является показателем качества при быстро изменяющемся воздействии. Для систем авторегулирования лучшей считается колебательная переходная характеристика с быстрым затуханием колебаний на вершине (рис. 4). Рис. Обычно используются следующие числовые параметры переходной характеристики: время достижения ...

Скачать
14606
0
10

... характеристик системы в установившемся режиме составляется статическая модель. В ней отражаются только функциональные преобразования процессов. Статическая модель системы изображена на рис. 4. При ее составлении учитывалось, что для постоянного воздействия коэффициент передачи ФНЧ равен 1, а частота перестраиваемого генератора fп г = fпг0 + Dfпг, где fпг0 – частота ПГ при управляющем ...

0 комментариев


Наверх