1.3. Выводы по главе.

Сущность действия контроля заключена в обязательном сопоставлении действий с «образцом», с эталоном действия.

Формирование действия контроля у младших школьников проходит путь от контроля со стороны взрослых (от внешней формы) к собственно самоконтролю (к внутренней форме). В начале обучения в школе овладение действием контроля выступает как самостоятельная форма деятельности, внешняя по отношению к основной задаче. Постепенно, в процессе обучения действие контроля превращается в необходимый элемент учебной деятельности, включенный в процесс ее выполнения.

Выполнение действия контроля способствует тому, что учащиеся обращают внимание на содержание собственных действий с точки зрения их соответствия решаемой задаче. Такое отношение школьников к собственным действиям служит существенным условием правильности их построения и изменения.

На начальном этапе обучения действие контроля реализуется по конкретному образцу, затем по представлению о нем и на завершающем этапе – на основании обобщенного представления образцов.


2. Возможности формирования действия контроля в процессе работы над вычислительными приёмами и навыками

2.1. Общая характеристика формирования вычислительных приёмов и навыков у младших школьников

Деятельность по овладению вычислительных приёмов можно рассматривать как учебную деятельность, важнейшим компонентом является действие контроля. Под контролем при правильности вычислительных приёмов следует понимать как проверку всей деятельности, направленной на выполнение вычислительных приёмов, так и проверку конечного результата.

В век компьютерной грамотности значимость навыков письменных вычислений, несомненно, уменьшилась. Вместе с тем, научиться быстро и правильно выполнять письменные вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости этих навыков для дальнейшего обучения в школе.

Особенность изучения письменных вычислений обусловлена тем, что у детей быстро развивается усталость при работе с числами. Это объясняется большим количеством операций как письменного сложения и вычитания, так и письменного умножения и деления. Избежать быстрой утомляемости и снижения внимания при изучении письменных вычислений поможет чередование различных видов деятельности, отказ от однообразных тренировочных упражнений, обучение приёмам действия контроля. Действие контроля должно присутствовать на каждом этапе выполнения вычислительного приёма. Только в этом случае возможно постоянное прослеживание хода выполнения учебных действий, своевременное обнаружение различных больших и малых погрешностей в их выполнении, а также внесение необходимых корректив в них. Обнаруженная ошибка в процессе вычислений позволит сохранить ребёнку внутренние силы, предотвратить преждевременную усталость. Для контроля в выполнении письменных вычислений целесообразно показать ученикам, как использовать опорные сигнал, например точки, напоминающие о том, что следует учесть перенесённую через разряд единицу. В связи с этим необходимо больше внимания уделять формированию действия контроля в процессе работы над вычислительными приёмами и навыками, так как организационное на уроке математики действие контроля, приводит к концентрации внимания всех учащихся, формирует в практической деятельности каждого ученика умение рассуждать, исключает ошибки в тетрадях, что позволяет совершенствовать умения осознанно выполнять вычислительные приёмы.

Формирование у младших школьников вычислительных навыков остаётся одной из главных задач начального обучения математике, поскольку вычислительные навыки необходимы при изучении арифметических действий.

В ряде исследований [2], [8] раскрываются основные положения системы формирования вычислительного навыка. Особое внимание было уделено работе М.А. Бантовой, посвящённой изучению данной темы.

Раскроем суть вычислительного приёма. Пусть надо сложить числа 8 и 6. Приём вычисления для этого случая будет состоять из ряда операций:

замена числа 6 суммой удобных слагаемых 2 и 4;

прибавление к числу 8 слагаемого 2;

прибавление к полученному результату, к числу 10, слагаемого 4.

Здесь выбор операций и порядок их выполнения определяется соответствующей теоретической основой приёма – применением свойства прибавления к числу суммы (сочетательное свойство): замена числа 6 суммой удобных слагаемых, затем прибавление к числу 8 последовательно каждого слагаемого. Кроме того, здесь используются и другие знания, например, при выполнении первой операции используется знание состава чисел первого десятка: 10=8+2 и 6=2+4.

Таким образом, можно сказать, что приём вычисления над данными числами складывается из ряда последовательных операций, выполнение которых приводит к нахождению результата требуемого арифметического действия над этими числами; причём выбор операций в каждом приёме определяется теми теоретическими положениями, которые используются в качестве теоретической основы.

Вычислительный навык – это высокая степень овладения вычислительными приёмами.

В большинстве случаев уже в начальных классах школы для нахождения результата арифметического действия можно использовать в качестве теоретической основы различные теоретические положения, что приводит к разным приёмам вычислений.

Например:

156=15+15+15+15+15+15=90;

156=(10+5)6=106+56=90;

156=15(23)=(152)3=90.

Теоретической основой для выбора операций, составляющих первый из приведённых приёмов, является конкретный смысл действия умножения; теоретической основой второго приёма – свойство умножения суммы на число, а третьего приёма – свойство умножения числа на произведение. Операции, составляющие приём вычисления, имеют разный характер. Многие из них сами являются арифметическими действиями. Эти операции играю особую роль в процессе овладения вычислительными приёмами: выполнение приёма в свёрнутом плане сводится к выделению и выполнению именно операций, являющихся арифметическими действиями. Поэтому операции, являющиеся арифметическими действиями, можно назвать основными. Например, для случая 164 основными будут операции: 104=40, 64=24, 40+24=64. Все другие операции – вспомогательные.

Число операций составляющих прием, определяется прежде всего выбором теоретической основы вычислительного приема. Например, при сложении чисел 57 и 25 в качестве теоретической основы может выступать свойство прибавления суммы к числу, тогда прием будет включать три операции: замена числа 25 суммой разрядных слагаемых 20 и 5, прибавление к числу 57 слагаемого 20 и прибавление к результату, к 77, слагаемого 5; если же теоретической основой является свойство прибавления суммы к сумме, то прием для того же случая будет включать пять операций: замена числа 75 суммой разрядных слагаемых 50 и 7, замена числа 25 суммой разрядных слагаемых 20 и 5, сложение чисел 7 и 5, сложение полученных результатов 70 и 12. Число операций зависит также от чисел, над которыми выполняются арифметические действия.

Число операций, выполняемых при нахождении результата арифметического действия, может сокращаться по мере овладения приемом. Например, для случаев вида 8+2 на начальной стадии формирования навыка ученик выполняет три операции: замена числа 2 суммой 1 и 1, прибавление числа 1 к 8 , прибавление числа 1 к результату, к 9. Однако после заучивания таблицы сложения ученик выполняет одну операцию – он сразу связывает числа 8 и 2 с числом 10. Как видим, здесь прием как бы перерастает в другой.

Д

Структура вычислительного приёма

ля большей наглядности структуру вычислительного приема мы представили в виде схемы:


Теоретическая основа



Основные операции

Вспомогательные операции




Общеизвестно, что теоретической основой вычислительных приёмов служат определения арифметических действий, свойства действий и следствия, вытекающие из них. Имея это в виду и принимая во внимание методический аспект, можно выделить группы приёмов в соответствии с их общей теоретической основой. Существуют различные классификации вычислительных приёмов. Рассмотрим более детально классификацию вычислительных приёмов, предложенную Бантовой М.А., основанием которой является общность теоретической основы вычислительных приёмов, изучаемых в начальных классах.

Данную классификацию мы представили в виде таблицы.


Таблица 1.

Классификация вычислительных приёмов по общности теоретической основы

Группы вычислительных приёмов


Теоретическая основа

Устные Письменные
Табличные Внетабличные

конкретный смысл арифметических действий

а2,3,4; 18:6; 23 и т.д.



законы и свойства арифметических действий

а+5,6,7,8,9 и т.д.

542; 5420; 273; 144; 81:3; 120:45; 1840 и т.д.

49+23;

90-36 и т.д.

связи между компонентами и результатами арифметических действий

а-5,6,7,8,9; 21:3 и т.д. 9-7; 60:3; 54:18 и т.д. Письменные приёмы деления и умножения

изменение результатов арифметических действий


46+19; 255; 300:50 и т.д.

512-298 и т.д

вопросы нумерации чисел

а1

10+6; 16-10; 1200:100; 4020 и т.д.

Письменные приёмы деления и умножения

правила

а0

а1; а:1; а0; а:0; 0:а


Как видим, все вычислительные приёмы строятся на той или иной теоретической основе, причём в каждом случае учащийся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительных приёмов.

Это реальная предпосылка овладения учащимися осознанными вычислительными навыками.

Общность подходов каждой группы – есть залог овладения учащимися обобщёнными вычислительными навыками.

Вычислительный навык – это высокая степень овладения вычислительными приёмами. Приобрести вычислительный навык – значит, для каждого случая знать какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро. В качестве сформированности полноценного вычислительного навыка можно выделить следующие критерии: правильность, осознанность, рациональность, обобщённость, автоматизм и прочность. Вместе с тем, учитывая, что ученик при выполнении вычислительного приёма должен отдавать отчёт в правильности и целесообразности каждого выполненного действия, то есть постоянно контролировать себя, соотнося выполняемые операции с образцом – системой операций, мы относим к основным критериям и степень овладения умением контролировать себя при выполнении вычислительного приёма.

О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению.

Нами были выделены и представлены в таблице уровни и критерии сформированности вычислительного навыка.

Таблица 2.

Критерии и уровни сформированности вычислительного навыка

уровни

критерии

высокий средний низкий
1. правильность Ученик правильно находит результат арифметического действия над данными числами. Ребёнок иногда допускает ошибки в промежуточных операциях. Ученик часто неверно находит результат арифметического действия, т.е. не правильно выбирает и выполняет операции.
2. осознанность Ученик осознаёт, на основе каких знаний выбраны операции. Может объяснить решение примера. Ученик осознаёт на основе каких знаний выбраны операции, но не может самостоятельно объяснить, почему решал так, а не иначе Ребёнок не осознаёт порядок выполнения операций.
3. рациональность Ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный приём. Может сконструировать несколько приёмов и выбрать более рациональный. Ученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный приём, но в нестандартных условиях применить знания не может. Ребёнок не может выбрать операции, выполнение которых быстрее приводит к результату арифметического действия.

4. обобщённость


Ученик может применить приём вычисления к большему числу случаев, то есть он способен перенести приём вычисления на новые случаи. Ученик может применить приём вычисления к большему числу случаев только в стандартных условиях. Ученик не может применить приём вычисления к большему числу случаев.
5. автоматизм Ученик выделяет и выполняет операции быстро и в свёрнутом виде. Ученик не всегда выполняет операции быстро и в свёрнутом виде. Ученик медленно выполняет систему операций, объясняя каждый шаг своих действий.
6. прочность Ученик сохраняет сформированные вычислительные навыки на длительное время. Ученик сохраняет сформированные вычислительные навыки на короткий срок. Ребёнок не сохраняет сформированные вычислительные навыки.

В качестве одного из показателей полноценного вычислительного навыка мы выделим контроль. При этом мы отдаём себе отчёт в том, что контроль – качественно иной показатель, чем перечисленные выше, а поэтому, его не следует рядопологать с ними. Умение осознанно контролировать выполняемые операции, позволяет формировать вычислительный навык более высокого уровня, чем без наличия этого умения. Это значит, что все ранее раскрытые нами качественные характеристики, проявляются при формировании вычислительного навыка на более высоком уровне. Как видим, умение контролировать себя в процессе формирования вычислительного навыка требует от ученика полноценного, осознанного, обобщённого и самостоятельного владения всеми операциями, определяющими процесс выполнения вычислительного приёма.

Традиционно процесс обучения рассматривается как процесс взаимодействия учителя и учащихся, в ходе которого решаются задачи образования, воспитания и развития. К основным структурным компонентам, раскрывающим его сущность, относят цели обучения, содержание, деятельность преподавания и учения, характер их взаимодействия, принципы, методы, формы обучения.

В традиционном обучении содержание представлено в основном предметными знаниями, умениями, навыками. Интеллектуальные, учебные и другие умения находятся в снятом виде, представлены через предметные действия, не выступают самостоятельным предметом усвоения. Уровень их усвоения служит показателем успешности обучения. Также очевиден репродуктивный уровень представленности учебного содержания в учебниках: это конкретные правила и определения, которые нужно выучить, большое количество тренировочных упражнений, которые выполняются с целью закрепления, наличие образцов выполнения учебных заданий, ведущие к однотипности его выполнения – это концентрический принцип структурирования учебного содержания, где изложение идёт от простого к сложному, от более лёгкого к трудному.

В развивающей системе обучения его содержание выступает средством развития личности ребёнка, следовательно, оно должно соответствовать содержанию развития, отражать его.

По мнению Г.А. Цукерман, взаимоотношения учителя и учащихся в традиционном обучении характеризуется как исполнительские, основанные на одностороннем подражании. Учитель при этом выступает как носитель совершенных образцов, а ребёнок как более или менее успешный имитатор действий взрослого: «Я делаю вслед за учителем. Я делаю сам, как учитель». Для традиционного обучения также характерно отсутствие собственно учебных отношений между детьми на уроках, что объясняется преобладанием фронтального способа организации деятельности детей, при котором все ученики связаны с учителем, общение замкнуто на нем.

Коренным образом меняется содержание деятельности учителя в развивающем обучении. Теперь главная задача учителя – не «донести», «преподнести» и показать учащимся, а организовать совместный поиск решения возникший перед ними задачи. Учитель начинает выступать как режиссёр мини-спектакля, который рождается непосредственно в классе.

Развивающее обучение немыслимо без постоянного учебного общения, при котором учащийся, поняв, чего он не знает, не умеет делать, сам начинает активно действовать, восполняя недостаток знания и включая в этот процесс учителя, как более опытного партнёра. Мнение учителя при этом воспринимается детьми как одна из возможных точек зрения, которую нужно соотнести с собственной точкой зрения и мнениями других учеников. Необходимость такого общения вытекает из природы поисковой, исследовательской деятельности, при которой поиск истины в одиночку невозможен, необходим коллективный поиск, сопровождающийся постоянным обменом мнениями.

Содержание обучения задаёт определённый способ его усвоения, определённый тип учения. В традиционном (объяснительно-иллюстративном) обучении преобладает догматический тип учения, который предполагает репродуктивный способ и уровень усвоения учебного содержания. Основные усилия учеников при этом сосредоточены на восприятии готовых знаний, образцов выполнения действий на их закреплении и воспроизведении. Находясь в ситуации решения какой-либо задачи, школьник, как правило, не старается найти способ решения, а усердно пытается вспомнить решение аналогичных задач. Если вспомнить не удаётся, аналогичная задача не отыскивается, то ученик чаще всего оставляет задачу не решённой или прибегает к другим (не учебным) способом выполнения. Как правило, ученик, оставаясь один на один с учебным материалом, не знает, как преступить к его изучению. Данный тип учения не может обеспечиваться активной мотивацией.

Отсутствие готового для запоминания учебного содержания изменяет позицию ученика в учебном процессе, коренным образом меняет тип учения. Из догматического он преобразуется в эвристический, исследовательский, при котором новое знание открывается учеником самостоятельно или в совместном поиске учителем и учащимся. И.С. Якиманская отмечает, что в условиях развивающего обучения учащиеся самостоятельно добывают знания и способы действия, перестраивают ранее полученные, осуществляют широкий перенос усвоенного на решение новых учебных и практических задач, то есть выполняют в основном не воспроизводящую, а преобразующую деятельность. Развивающие технологии имеют специальные методы, включающие детей в коллективный поиск: это создание проблемных ситуаций, ситуация учебного спора, метод коллизий, метод решения учебных задач.

Например, при формировании вычислительных навыков в традиционной системе рассматривается позиция: делай то, что тебе предлагают, чтобы научиться делать это быстро и правильно. Этот путь предполагает сообщение учащимся образца, алгоритма выполнения операций, на основании которого учащиеся многократно её выполняют. В результате такой репродуктивной деятельности достигается запоминание предложенного алгоритма и вырабатывается запланированный навык, при этом дети часто не осознают, на основе каких знаний выбраны операции и установлен порядок их выполнения.

В системе Л.В. Занкова действует другая позиция: делай для того, чтобы продвинуться в решении стоящей перед тобой математической проблемы или чтобы обнаружить такую проблему. Таким образом, используется косвенный путь формирования навыков, который предполагает включение учеников в продуктивную творческую деятельность, в самостоятельное установление алгоритма операции. Прежде всего, необходимо осознать, что предлагаемый путь является более длинным, и в системе нет стремления к быстрому формированию вычислительных навыков, а отводится большое время на осознание тех теоретических и практических основ, которые лежат в фундаменте предлагаемых способов вычислений. Такое осознание – процесс длительный, и его можно организовать только тогда, когда навык еще не сформировался. Если формирование навыка уже произошло, никакого плодотворного возврата к осознанию его источника не может быть для подавляющего большинства людей. Дети никогда не поймут, зачем нужно размышлять о том, что просто уже делаешь, не задумываясь.

Следующей особенностью является отказ от активной эксплуатации механической памяти при запоминании таких важных основ овладения вычислительными навыками, как таблицы сложения и умножения. В системе основ запоминания этих таблиц является длительная и активная деятельность, требующая постоянного обращения к ним. Именно этой особенностью диктуется то, что каждый ученик имеет право открыто пользоваться таблицами как справочным материалом до тех пор, пока ему это необходимо.

В результате такого подхода к формированию вычислительных навыков дети приобретают прочные и осознанные навыки выполнения математических действий. Когда такая цель достигнута, необходимо перейти к наращиванию скорости выполнения вычислений.

Органическое соединение осознания основ выполнения действий и формирование вычислительных навыков приводит к тому, что материал для работы над вычислительными навыками создается самими детьми, а не дается готовым.

Отличие разных систем обучения заключается не в том, что в одних используется один путь, а в других – другой. В каждой системе присутствуют оба подхода, различие же в том, каково соотношение этих путей. В системе, направленной на общее развитие учащихся, главным является именно косвенный путь формирования навыков, прямой же используется тогда и в той мере, как это необходимо. В связи с этим, системы обучения имеют различные подходы формирования вычислительных навыков. Так, например, традиционная система предполагает ряд этапов, направленных на работу над каждым отдельным приемом:

Подготовка к введению нового приема.

На этом этапе создается готовность к усвоению вычислительного приема, а именно: учащиеся должны усвоить те теоретические положения, на которых основывается теоретический прием. Центральное же звено при подготовке к введению нового приема – овладение учеником основными операциями, которые войдут в новый прием.

Ознакомление с вычислительным приемом.

На этом этапе ученики усваивают суть приема: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия. Степень самостоятельности учащихся должна увеличиваться при переходе от приема к приему другой группы.

Закрепление знания приема и выработка вычислительного навыка.

На данном этапе учащиеся должны твердо усвоить систему операций, составляющих вычислительный прием, и предельно быстро выполнять эти операции, то есть овладеть вычислительным навыком.

В процессе работы важно предусмотреть ряд стадий в формировании у учащихся вычислительных навыков.

На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе. На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции, обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, то есть промежуточных вычислений. На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, то есть здесь происходит свертывание и основных операций. Четвертая стадия характеризуется предельным свертыванием выполнения операций: учащиеся выполняют все операции в свернутом плане предельно быстро, то есть они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

Названные стадии не имеют четких границ: одна постепенно переходит в другую.

В системе Л. В. Занкова [2] формирование навыков проходит три принципиально различных этапа.

Первый этап – осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения. На этом обязательно прослеживается, оценивается и создается каждый шаг в рассуждениях детей, устные рассуждения переводятся в запись математическими знаками. Отсюда вытекает характерный признак этого этапа - подробная запись выполнения операции, с которой в данный момент работают ученики. На этом этапе практически не используется прямой путь. Он возникает только при выполнении промежуточных, знакомых детям операций. Результатом этого этапа является выработка алгоритма выполнения операции и его осознание.

Главным направлением второго этапа является формирование правильного выполнения операции. Для достижения этой цели необходимо не только использование выработанного на 1 этапе алгоритма выполнения операции, но, может быть, в еще большей степени, свободная ориентация в ее нюансах, умение предвидеть. К чему приведет то или иное изменение компонентов операции. В силу этого на втором этапе используются оба пути формирования навыков, однако косвенный путь продолжает быть ведущим, прямой же используется в качестве подчиненного.

Третий этап формирования навыка нацелен на достижение высокого темпа выполнения операции. Именно на этом этапе на первый план выходит прямой путь формирования навыка. Главная задача учителя – построить работу так, чтобы дети хотели выполнять необходимые вычисления и получали от этого удовольствие.


Информация о работе «Формирование действия контроля в процессе работы над вычислительными приемами и навыками у младших школьников»
Раздел: Педагогика
Количество знаков с пробелами: 107907
Количество таблиц: 22
Количество изображений: 8

Похожие работы

Скачать
96207
8
6

... , внесение усовершенствований. Проанализировав психолого-педагогическую и методическую литературу, можно сделать вывод, что эффективность формирования навыка самоконтроля у младших школьников достигается в результате использования таких методов и приемов (сверка с написанным образцом; взаимопроверка с товарищем; коллективное выполнение задания и коллективная проверка; сочетание коллективной и ...

Скачать
33919
3
0

... Оно и определило формулировку проблемы: каковы условия продуктивного формирования УД младших школьников при обучении математике с применением персональных компьютеров? Целью исследования является выявление особенностей формирования учебной деятельности младших школьников при обучении математике с применением ПК. Объектом исследования выступает методическая система обучения младших школьников ...

Скачать
100139
9
8

... современными представлениями о нем, методами изучения творчества, качествами творческой личности, их системой, чтобы иметь возможность формировать такие качества у школьников начальных классов. Раздел 2. Методическая система формирования творческой личности младшего школьника средствами математики   2.1. Методика формирования творческой личности при обучении математике Речь должна идти о ...

Скачать
64183
0
0

... и суммы на число. Рассмотрение этих двух правил диктуется методическими соображениями. Глава II. Исследовательская работа по изучению формирования понятия свойств арифметических действий у младших школьников 2.1 Изучение арифметических действий и их свойств в различных системах обучения В программе Моро М.И. уделяется значительное внимание формированию у учащихся осознанных и прочных, ...

0 комментариев


Наверх