2. Логические структуры БД.
БД могут иметь различную организацию.
Физическая организация - размещение конкретных видов информации на определенных носителях.
Логическая организация данных предполагает создание моделей, т.е. создание моделей или формального ... данных.
Модель данных определяет: состав данных, типы данных, связи данных. Модель данных описывается на языке описания данных. Исторически сложилось, что модели данных могут быть 3-х типов:
- историческая
- сетевая
- реляционная модель (более распространенная)
Каждая ячейка - элемент таблицы. Связь таблиц устанавливается через однородные данные.
1. Предпосылки развития вычислительных систем и вычислительных сетей.
Электронно-вычислительная техника является самой динамично развивающейся областью в науке и практике. Каждые 2 года появляются новые типы CPU, а каждые 5 лет - удвоение скорости работы вычислителей. Побудительным мотивом развития средств ЭВТ являются противоречие между всевозрастающими требованиями пользователей и возможностью производства. На достаточно коротком промежутке времени отличающегося стабильностью элементной базы остается справедливым квадратичный закон стоимости от производительности.
Достигнуть требуемых характеристик в вычислительной технике путем построения вычислительных систем, у которых зависимость не квадратичная а линейная. Вычислительные системы требуют комплексированности или соединения программных модулей между собой.
Основными причинами развития ВС является экономическая. Эффект от вычислительных систем заключается в следующем:
1. Увеличение необходимой надежности - дополнительно комплексированные средства позволят обеспечивать работоспособность системы, даже если часть этих средств откажет в работе.
2. Повышенный уровень достоверности.
3. Увеличение количества и качества услуг, предъявляемых пользователем.
Кроме этих основных преимуществ в вычислительных системах имеется дополнительные и именно улучшается использование оборудования и прог. Улучшается техническая эксплуатация и ПО. При организации систем можно вести централизованное обслуживание техники и ПО, т.е. уменьшить численность обслуживающего персонала и повысить квалификацию.
При построении ВС необходимо руководствоваться следующими принципами:
1. Должна обеспечиваться модульность структуры как технических, так и программных средств.
2. Принцип типизации, стандартизации, унификации.
3. Иерархии управления при функционировании аппаратно-программного комплекса.
4. Обеспечение различных режимов работы.
5. Система должна сохранить способность к самоорганизации, адаптации.
2. Квалификация вычислительных систем.
В настоящее время существует тысячи ВС. Для того, чтобы разобраться в их возможностях, необходима их квалификация по мелким признакам.
1 уровень квалификации учитывает расстояние между некомплексируемыми модулями. Сосредоточение ВС предполагает расположение вычислительных модулей в непосредственной близости друг от друга. Передача информации между модулями осуществляется с помощью простейших связей. Расстояние между модулями можно увеличить до нескольких сот метров, если использовать экранизированные (коаксиальные) кабели (в оплетке). *Обычным кабелем можно соединить PC не более 10-15м.
В распределенных системах расстояние между модулями может быть очень велико (км). Поэтому для связи модуля используется каналообразующая аппаратура - преобразование сигналов и передача их по специальным каналам связи.
ВС могут быть многомашинными и многопроцессорными. В многомашинных системах каждая машина работает под управлением собственной ОС. Подключенные к ней другие машины рассматриваются ОС как специализированные внешние устройства. В многопроцессорных системах координация работ CPU осуществляется общей ОС. Кроме того, все CPU имеют общую RAM. Кроме этих признаков классификации рассматриваются и более мелкие:
1. По числу комплексированных ЭВМ или CPU.
2. По однотипности комплексированных элементов.
3. По степени территориальной обобщенности.
4. По методам управления различают централизованное и децентрализованное управление. Централизованное лучше используется в простых.
5. По структурным признакам (могут иметь свою иерархию). Чаще всего рассматривают топологические признаки.
6. По принципу закрепления функции различают:
- с жестким распределением функции
- с плавающим распределением функции управления
7. По временным режимам работы.
3. Комплексированность и совместимость в ВС.
Связь модулей в систему потребует, чтобы объединенные модули были совместимы. Понятие совместимости включает 3 аспекта:
1. Аппаратурную совместимость.
2. Программную совместимость.
3. Информационную совместимость.
1. Аппаратурная совместимость предполагает стандартизацию и унификацию связей. Понятие связи включает и стандартизацию кабельных соединений их разъемов, алгоритмов взаимодействия (последовательность сигналов), стандартизацию электрических сигналов.
2. Программная совместимость зависит от однородности и однотипности комплексированных средств. Если комплексированные средства однотипные, то программные средства полные. Если комплексированные средства не однородные, не одновременные, то такие системы совместимы по принципу “снизу вверх” (386-Pentium). Если комплексируется однотипная аппаратура, то обмен исходными модулями с последующей трансляцией их после обмена.
3. Информационная совместимость. Она предполагает, что передаваемые информации одинаково интерпретируются объектами, т.е. должны быть стандартизованы алфавиты, разрядность, форматы, структура, разновидность и т.д.
4. Взаимодействие комплексированных ЭВМ CPU может производиться по различным уровням. Различают логические и физические уровни.
Логические уровни:
5 логических уровней комплексирования:
Логические уровни объединяют средства комплексирования, имеющие общие принципы управления и работы.
1 уровень - уровень комплексирования CPU. Передача информации идет через систему прямого управления.
CPU - инициатор обмена - должен ... через интерфейс ... команду “прямое чтение” или “прямая запись”. Другой CPU, получив это прерывание, отвечает противоположной командой. После этого передается байт данных. Каждый байт 8 разрядов (0-255). Содержимое байта играет роль сигнала - приказа.
Этот канал не предназначается для передачи больших информационных массивов, т.к. процессы взаимодействия на каждый байт предостанавливают работу обоих CPU.
... -педагогическая или научно-техническая проблема, являющаяся новым научным вкладом в теорию определенной области знаний (педагогику, технику и другие). 4. ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ВЫПОЛНЕНИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ БАКАЛАВРА ФИЗИКО-МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ ПРОФИЛЬ ИНФОРМАТИКА 4.1. Положение о выпускной квалификационной работе бакалавра физико-математического образования: ...
... будут происходить в будущих общеобразовательных и других учебных заведениях. Я не ставила перед собой цель оценивать эти сложные процессы, но нужно сделать вывод, что стремление обеспечивать личностно – ориентированное обучение на уроках информатики, создавать условия для развития индивидуальности ученика это важная, если не самая главная задача учителя. Хотя она и не из разряда легких. Именно ...
... учебного процесса методической подготовки будущего учителя. Основное содержание исследования отражено в следующих публикациях автора: I. Монографии: 1. Абдуразаков М.М. Совершенствования содержания подготовки будущего учителя информатики в условиях информатизации образования. –Махачкала: ДГПУ, 2006. –190 с. 12 п.л. 2. Гаджиев Г.М., Абдуразаков М.М. Технология преподавания информатики. – ...
... производительных сил, тем быстрее повышается Б. населения. В еще большей степени Б. связано с эффективностью социально-экономической политики в данном обществе. Информатика как наука. Предмет и объект прикладной информатики. Системы счисления Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и ...
0 комментариев