8.1 Проверка корпуса аппарата на прочность
8.1.1 Проведем расчет для рабочего условия
Рассчитываем продольные напряжения на наветренной стороне по формуле
, (125)
где F – осевое сжимающие усилие при рабочих условиях, F=0,537 МН;
Рассчитываем продольные напряжения на подветренной стороне по формуле
, (126)
.
Кольцевые напряжения рассчитываем по формуле
, (127)
МПа.
Рассчитываем эквивалентные напряжения на наветренной стороне по формуле
, (128)
МПа.
Рассчитываем эквивалентные напряжения на подветренной стороне по формуле
, ( 129)
.
Проверяем условие прочности по следующим условиям
- на наветренной стороне
, (130)
124,04 МПа < 145×1 МПа.
- на подветренной стороне
, (131)
124,31 МПа<145 МПа.
Условие прочности выполняются.
8.1.2 Проведем расчет при условии монтажа
Рассчитываем продольные напряжения на наветренной стороне по формуле
, (132)
где F – осевое сжимающие условие при монтаже, F=0,514 МН;
По ГОСТ Р 51274 – 99 при условии монтажа p=0 МПа.
.
Рассчитываем продольные напряжения на подветренной стороне по формуле
, (133)
.
Кольцевые напряжения рассчитываем по формуле
, (134)
МПа.
Рассчитываем эквивалентные напряжения на наветренной стороне по формуле
, (135)
МПа.
Рассчитываем эквивалентные напряжения на подветренной стороне по формуле
, ( 136)
.
Проверяем условие прочности по следующим условиям
- на наветренной стороне
, (137)
0,954 МПа < 145×1 МПа.
- на подветренной стороне
, (138)
6,635 МПа<145 МПа.
Условия прочности выполняются.
8.2 Проверка корпуса аппарата на устойчивость
Проверка устойчивости для рабочего условия и при условии испытания.
Допускаемая сжимающая сила из условия прочности сечения У-У корпуса аппарата определяется по формуле
, (139)
.
Допускаемая осевая нагрузка из условия местной устойчивости формы определяется по формуле
, (140)
MH,
МН.
Допускаемая осевая сжимающая сила из условия устойчивости формы определяется по формуле
, (141)
где l – гибкость аппарата;
,
,
МН,
.
Определяем эквивалентную сжимающую осевую силу по формуле
, ( 142)
.,
.
Определяем допускаемый изгибающий момент из условия прочности
, ( 143)
.
Определяем допускаемый изгибающий момент из условия устойчивости
, (144)
.
.
Определяем допускаемый изгибающий момент по формуле
, (145)
.
.
Проверяем аппарат на устойчивость от совместного действия нагрузок по условию
, (146)
При условиях испытания
,
Условие выполняется.
При рабочих условиях
Условие устойчивости выполняется, следовательно, аппарат сохраняет прочность и устойчивость под действием совместно действующих нагрузок.
... Тогда: 2.2 Гидравлический расчет насадочной колонны аппарата бор рабочей скорости паров обусловлен многими факторами и обычно осуществляется путем технико-экономического расчета для каждого конкретного процесса. Для ректификационных колонн, работающих в пленочном режиме при атмосферном давление, рабочую скорость можно принять на 20% ниже скорости захлёбывания: (26) где ...
... применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки). Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. 2. Теоретические основы расчета тарельчатых ректификационных колонн Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический ( ...
... содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом). 3 Расчётная часть 3.1 Задание и исходные данные Необходимо рассчитать насадочную ректификационную колонну для разделения бинарной смеси диоксан – толуол. GD=1000 кг/ч, xF=45% (мол.), xD=90% (мол.), xW=2% (мол.). Давление в колонне составляет 600 мм рт. ст., смесь поступает при температуре ...
... ректификационная колонна 5-куб-испаритель 6-дефлегматор 7-теплообменник 8-промежуточная ёмкость 9-насос 10- теплообменник 11-ёмкость. ЗАДАНИЕ №1 «Расчет ректификационной колонны непрерывного действия» Провести расчет ректификационной колонны непрерывного действия для разделения смеси бензол-толуол с определением основных геометрических размеров колонного аппарата, производительность ...
0 комментариев