5.2 Расчет болтового соединения
Расчетная длина шпилек
lБ = lБО + 0,28×d, (61)
где lБО - длина шпильки между опорными поверхностями головки болта и гайки, lБО=220 мм.;
d - диаметр отверстия под болт, d=46 мм.
lБ=220+0,28×46=232,88 мм.
Линейная податливость шпилекyБ=lБ/(EБ×fБ×zБ), (62)
где fБ - расчетная площадь поперечного сечения болта по внутреннему диаметру резьбы, fБ=10,9×10-4 м2;
ЕБ - модуль продольной упругости материала болта, ЕБ=1,85×105 МПа.
yБ= 232,88×10-3/(1,85×105×10,9×10-4 ×18)=6,4×10-5 м/Н.
Коэффициент жесткости для фланцев с овальными прокладкамиa=1. (63)
Найдем безразмерный коэффициент u по формуле
u=A×yБ, (64)
где
A=[yп+yБ+0,25×(yФ1 + yФ2)×(DБ - Dп.ср)2]-1, (65)
при стыковки фланца с плоской крышкой
yф1=[1-w×(1+0,9×l)]×y2/(h13×E), (66)
yФ2=yкр , (67)
По формулам (63)…(67) определяется безразмерный коэффициент
yф1=[1-0,6×(1+0,9×0,5)]×3,8/(0,0133×1,75×105)=2,27 м/МН,
yф2=0,001,
A=[0+6,4×10-5+0,25×(2,27+0,001)×(0,69-0,525)2]-1=10,67,
u=10,67×6,4×10-5=0,0007.
5.3 Расчет фланцевого соединения работающего под внутренним давлением.
Нагрузка действующая на фланцевое соединение от внутреннего избыточного давления найдем по формуле
,
(68)
Qд=0,785×0,5252×11=2,38 МН.
Реакция прокладки в рабочих условиях
Rп=2×p×Dп.ср×bE×m×pR , (69)
где m - коэффициент, по ОСТ 26-426-79 m=5,5
Rп=2×3,14×0,525×1,5×5,5×11=299,2 МН.
Усилия, возникающие от температурных деформацийQt=u×zБ×fБ×EБ×(aф×tф - aБ×tБ), (70)
где aф, aБ - коэффициенты температурного линейного расширения фланца и болтов, aБ = 12,36×10-6 1/°C, aф = 17,3×10-6 1/°C;
fБ, tф, tБ - коэффициенты, fБ=5,4×10-4 м2, tф=240, tб=37,5.
Qt=0,0007×18×5,4×10-4×1,85×105×(17,3×10-6×240-12,36×10-6×237,5)=0,0015 МН.
Болтовая нагрузка в условиях монтажа (до подачи внутреннего давления) при p>0,6 МПа
PБ1=max{a×Qд+Rп; p×Dп.ср×bE×q}, (71)
где q - параметр, q=125;
a - коэффициент жесткости фланцевого соединения, a=1;
[sБ]20 – допускаемое напряжение при температуре 20 °С, [sБ]20=230 МПа.
РБ1 = max{1×2,38+0,525/2; 3,14×510×1,5×125}=max{2,65;309}=309 МН.
Болтовая нагрузка в рабочих условияхPБ2=РБ1+(1 - a)×QД+Qt, (72)
PБ2=309+(1-1)×2,38+0,0015=309,0015 МН.
Найдем приведенные изгибающие моменты диаметральном сечении фланца по формуламM01=0,5×PБ1×(Dб-Dп.с.), (73)
, (74)
М01=0,5×309×(0,69-0,525)=25,5 МН×м,
МН×м.
Принимаем за расчетное МR=26,67 МН×м.
Условия прочности шпилек,
(75)
, (76)
МПа£230 МПа,
МПа£220 МПа.
Условия прочности выполняется.
Критический момент на ключе при затяжки определим из графика [3]
Мкр=2,2×103 МН×м.
... Тогда: 2.2 Гидравлический расчет насадочной колонны аппарата бор рабочей скорости паров обусловлен многими факторами и обычно осуществляется путем технико-экономического расчета для каждого конкретного процесса. Для ректификационных колонн, работающих в пленочном режиме при атмосферном давление, рабочую скорость можно принять на 20% ниже скорости захлёбывания: (26) где ...
... применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки). Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. 2. Теоретические основы расчета тарельчатых ректификационных колонн Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический ( ...
... содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом). 3 Расчётная часть 3.1 Задание и исходные данные Необходимо рассчитать насадочную ректификационную колонну для разделения бинарной смеси диоксан – толуол. GD=1000 кг/ч, xF=45% (мол.), xD=90% (мол.), xW=2% (мол.). Давление в колонне составляет 600 мм рт. ст., смесь поступает при температуре ...
... ректификационная колонна 5-куб-испаритель 6-дефлегматор 7-теплообменник 8-промежуточная ёмкость 9-насос 10- теплообменник 11-ёмкость. ЗАДАНИЕ №1 «Расчет ректификационной колонны непрерывного действия» Провести расчет ректификационной колонны непрерывного действия для разделения смеси бензол-толуол с определением основных геометрических размеров колонного аппарата, производительность ...
0 комментариев