Аннотация


Темой курсовой работы является "Статистическая обработка экспериментальных данных". Целью курсовой работы является закрепление изученного материала по дисциплине "Метрология, стандартизация и сертификация" и приобретение практических навыков обработки экспериментальных данных различных видов измерений.

В курсовой работе приведены:

– в разделе "Однократные измерения": порядок выполнения однократного измерения, внесены необходимые поправки и определен предел, в котором находится значение измеряемой величины;

– в разделе "Многократные измерения": результаты измерений, порядок выполнения многократного измерения, исключены ошибки из результатов измерений и определен результат измерений;

– в разделе "Обработка результатов нескольких серий измерений": серии результатов измерений, порядок их обработки и результат измерения;

– в разделе "Косвенные измерения": функциональная зависимость между искомой величиной Z и измеряемыми величинами X и Y, определены и внесены поправки и определен результат измерения;

– в разделе "Определение погрешностей результатов измерений методом математической статистики": результаты измерения, выстроены: гистограмма нормального рассеяния измерений и график реального рассеяния измерений в едином масштабе.

Курсовая работа содержит 30 листов расчетно-пояснительной записки.


1





СОДЕРЖАНИЕ


Курсовая работа 1

Введение 3

1. Однократное измерение 4

2. Многократное измерение 6

3. Обработка результатов нескольких серий измерений 13

4. Функциональные преобразования результатов измерений (косвенные измерения) 19

5. Определение погрешностей результатов измерений методом математической статистики 25

29

Литература 30


Введение

Измерения — один из важнейших путей познания природы человеком. Они играют огромную роль в современном обществе. Наука и промышленность не могут существовать без измерений. Практически нет ни одной сферы деятельности человека, где бы интенсивно не использовались результаты измерений, испытаний и контроля.

Диапазон измерительных величин и их количество постоянно растут и поэтому возрастает и сложность измерений. Они перестают быть одноактным действием и превращаются в сложную процедуру подготовки и проведения измерительного эксперимента и обработки полученной информации.

Другой причиной важности измерений является их значимость. Основа любой формы управления, анализа, прогнозирования, контроля или регулирования — достоверная исходная информация, которая может быть получена лишь путем измерения требуемых физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений обеспечивает правильность принимаемых решений.

1. Однократное измерение

Условие. При однократном измерении физической величины получено показание средства измерения X = 10. Определить, чему равно значение измеряемой величины, если экспериментатор обладает априорной информацией о средстве измерений и условиях выполнения измерений, согласно исходным данным.

Исходные данные:

Показание средства измерения – X = 10.

Вид закона распределения – равномерный.

Значение оценки среднеквадратического отклонения – SX= 0,8.

Значение аддитивной поправки – Θa = 0,9.


Расчет. Так как в качестве априорной используется информация о законе распределения вероятности, т.е. закон распределения вероятности является равномерным, то пределы, в которых находится значение измеряемой величины, определяются через доверительный интервал:


; (1)


Для равномерного закона распределения вероятности результата измерения значение E (аналог доверительного интервала) можно определить из выражения:

, (2)

где .


Внесем аддитивную поправку и уточним пределы, в которых находится значение измеряемой величины.

2. Многократное измерение

Условие. При многократном измерении одной и той же физической величины получена серия из 24 результатов измерений Qi; . Определить результат измерения.

Исходные данные:

Таблица 1

№ изме-рения Результат измерения № изме-рения Результат измерения № изме-рения Результат измерения № изме-рения Результат измерения
1 482 7 483 13 483 19 483
2 485 8 483 14 483 20 482
3 486 9 481 15 483 21 481
4 486 10 480 16 483 22 481
5 483 11 492 17 484 23 483
6 483 12 486 18 484 24 495

Расчет. Порядок расчета и их содержание определяются условием:

10…15 < n< 40…50,

так как n = 24.

1. Определяем оценки результата измерения и среднего квадратического отклонения результата измерения .

(3)

(4)


Для удобства вычисления среднего квадратического отклонения результата измерения составим таблицу:

Таблица 2

№ из-мерения

Результат измере-ния (Qi)

№ из-мерения

Результат измере-ния (Qi)

1 482 -1,9583 3,8351 13 483 -0,9583 0,9184
2 485 1,0417 1,0851 14 483 -0,9583 0,9184
3 486 2,0417 4,1684 15 483 -0,9583 0,9184
4 486 2,0417 4,1684 16 483 -0,9583 0,9184
5 483 -0,9583 0,9184 17 484 0,0417 0,0017
6 483 -0,9583 0,9184 18 484 0,0417 0,0017
7 483 -0,9583 0,9184 19 483 -0,9583 0,9184
8 483 -0,9583 0,9184 20 482 -1,9583 3,8351
9 481 -2,9583 8,7517 21 481 -2,9583 8,7517
10 480 -3,9583 15,6684 22 481 -2,9583 8,7517
11 492 8,0417 64,6684 23 483 -0,9583 0,9184
12 486 2,0417 4,1684 24 495 11,0417 121,9184




Σ


0

258,9583



2. Необходимо обнаружить и исключить ошибки. Для этого:

– вычисляем наибольшее по абсолютному значению нормированное отклонение

(5)

– задаемся доверительной вероятностью P = 0,95 и из соответствующих таблиц (табл. П6) с учетом q = 1 – P находим соответствующее ей теоретическое (табличное) значение :

при n = 24;

– сравниваем с : . Это означает, что данный результат измерения Qi,т.е. Q24 является ошибочным, он должен быть отброшен. Необходимо повторить вычисления по п.п. 1 и 2 для сокращенной серии результатов измерений и проводить их до тех пор, пока не будет выполняться условие .

Повторяем вычисления, при этом отбрасываем измерение №24:

(6)

(7)

Таблица 3

№ из-мерения

Результат измере-ния (Qi)

№ из-мерения

Результат измере-ния (Qi)

1 482 -1,4783 2,1853 13 483 -0,4783 0,2287
2 485 1,5217 2,3157 14 483 -0,4783 0,2287
3 486 2,5217 6,3592 15 483 -0,4783 0,2287
4 486 2,5217 6,3592 16 483 -0,4783 0,2287
5 483 -0,4783 0,2287 17 484 0,5217 0,2722
6 483 -0,4783 0,2287 18 484 0,5217 0,2722
7 483 -0,4783 0,2287 19 483 -0,4783 0,2287
8 483 -0,4783 0,2287 20 482 -1,4783 2,1853
9 481 -2,4783 6,1418 21 481 -2,4783 6,1418
10 480 -3,4783 12,0983 22 481 -2,4783 6,1418
11 492 8,5217 72,6200 23 483 -0,4783 0,2287
12 486 2,5217 6,3592

Σ


0

131,7391

при n = 23;


Сравниваем с : . Отбрасываем измерение №11 и повторяем вычисления.

(8)

(9)

Таблица 4

№ из-мерения

Результат измере-ния (Qi)

№ из-мерения

Результат измере-ния (Qi)

1 482 -1,0909 1,1901 12 483 -0,0909 0,0083
2 485 1,9091 3,6446 13 483 -0,0909 0,0083
3 486 2,9091 8,4628 14 483 -0,0909 0,0083
4 486 2,9091 8,4628 15 483 -0,0909 0,0083
5 483 -0,0909 0,0083 16 484 0,9091 0,8264
6 483 -0,0909 0,0083 17 484 0,9091 0,8264
7 483 -0,0909 0,0083 18 483 -0,0909 0,0083
8 483 -0,0909 0,0083 19 482 -1,0909 1,1901
9 481 -2,0909 4,3719 20 481 -2,0909 4,3719
10 480 -3,0909 9,5537 21 481 -2,0909 4,3719
11 486 2,9091 8,4628 22 483 -0,0909 0,0083




Σ


0

55,8182


при n = 22;


Сравниваем с . Так как , то результат измерения №10 не является ошибочным и окончательно остается 22 измерения, т.е. n = 22.


Информация о работе «Статистическая обработка экспериментальных данных»
Раздел: Разное
Количество знаков с пробелами: 22448
Количество таблиц: 12
Количество изображений: 161

Похожие работы

Скачать
42056
53
8

... вывод, что случайная величина  распределена по равномерному закону, а случайная величина  – по нормальному. Заключение В ходе курсовой работы были освоены методы обработки данных статистического наблюдения, их анализа с помощью обобщающих показателей, установление теоретических законов распределения случайных величин и доказательство адекватности этих законов. Также в результате выполнения ...

Скачать
28659
0
0

... называется группа упорядоченных по величине значений признака, заменяемая в процессе расчетов средним значением. 2. Методы вторичной статистической обработки результатов эксперимента С помощью вторичных методов статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, ...

Скачать
15576
0
1

... снятия вклада на межмолекулярные взаимодействия рассчитывалась бессимметрийная газофазная константа равновесия реакции . Давления насыщенного пара  рассчитывались методом Ли-Кеслера [50] или по экспериментальным данным. Применение к расчету давлений насыщенного пара методики, описанной в главе 2.1, позволяет обеспечить погрешность расчета не более 10% отн. для всех давлений, приведенных в данной ...

Скачать
9686
0
0

... проведении физического эксперимента. Простота же общения дала возможность неквалифицированному исследователю принимать участие в серьёзных научных проектах. Именно для него, по-видимому, и были созданы пакеты обработки экспериментальных данных SABR и BOOTSTRAP, позволяющие находить зависимость физических величин по экспериментальным данным с большой достоверностью не только при неизвестном законе ...

0 комментариев


Наверх