2.3. Светотехнические единицы
Обычно в качестве основной величины для светотехнических расчетов выбирают световой поток P (или F), т.е. мощность потока лучистой энергии, которая измеряется в Вт, фотон/с, свВт или лм.
Как говорилось выше, при = 555 нм световой поток мощностью 1 Вт создает световое ощущение в 683 лм. Это световое ощущение и называется 1 свВт (световатт). Для других длин волн мощность в свВт всегда меньше мощности, выраженной в Вт, потому что РсвВт = РВт, где – коэффициент видности, меньший 1 для всех длин волн, кроме = 555 нм, когда он равен 1.
Для практической ориентации упомянем, что электрическая лампа накаливания с вольфрамовой нитью мощностью 100 Вт создает световой поток F = 1200 лм, т.е. дает световое ощущение, равное 1,76 свВт. В реальной светопроекционной системе 35-мм киноаппарата на экран попадает уже только 100 лм (т.е. 0,15 свВт), а для 16-мм проектора световой поток на экране составляет только 25 лм (0,04 свВт).
Сила света определяется как величина светового потока F в единичном телесном угле , т.е. это плотность светового потока в пространстве.
, где [] = 1 стерадиан = сферы
Сила света в радиометрии измеряется в Вт/стер. В фотометрии сила света измеряется в кенделах: 1 кд = 1 лм/1 стер.
Упоминавшаяся 100 Вт лампа накаливания, если ее считать изотропным источником, имеет силу света I = 1200 лм/4 = 95,5 кд.
Хотя в качестве исходной фотометрической величины логично выбирать (как мы и сделали) световой поток F, однако за исходную (основную) величину в фотометрии в действительности была выбрана сила света.
Кендела определяется как 1/60 фотометрической силы света с 1 см2 поверхности абсолютно черного тела при температуре затвердевания платины (2042 К) и наблюдении излучения в направлении нормали к излучающей поверхности. 2042 К называется фотометрической стандартной цветовой температурой. В качестве вторичного стандарта используют вольфрамовые лампы накаливания. Таким образом, изотропный источник излучения с силой света в 1 кд дает световой поток 4 лм (4 12,56).
В действительности изотропных излучателей нет, все они анизотропны. Поэтому надо выражаться достаточно аккуратно, и имеется в виду не просто сила света, а сила света в данном направлении. Поскольку излучатели анизотропны, в том числе лампы накаливания, для их фотометрии берут интегрирующую сферу, у которой коэффициент отражения практически равен 1, а затем измерения ведут через небольшое окно в этой сфере. Полный световой поток сравнивается с известным стандартом (эталоном).
Яркость – отношение силы света к излучающей поверхности в нормальном направлении. Т.е. яркость – это сила света с единицы поверхности (обозначают В или L):
, т.е. I = B S,
где S – площадь светящейся поверхности.
Если направление наблюдения составляет с нормалью угол , то Sэфф = Scos, поэтому I = BSэфф = BScos. Для неравномерной (неизотропной) яркости: . В этом случае часто используют понятие средней (габаритной) яркости:
.
Освещенность (светимость – если поверхность светится) – поверхностная плотность падающего (освещающего) потока: ,
.
Для изотропного излучателя:
F = I , поэтому ,
т.е. освещенность сферы с радиусом R.
Если направление наблюдения составляет с нормалью к площадке угол , то Sэфф=Scos, поэтому I = BSэфф = BScos. Можно написать: . При необходимости иметь B = B0 = const для разных углов надо, чтобы и световой поток зависел от угла так же, т.е. I = Io cos. Тогда.
Это условие соблюдается для ламбертова излучателя, т.е. излучателя в виде равномерно рассеивающей поверхности, излучающей свет с силой, пропорциональной косинусу угла между направлением излучения и нормалью. К ламбертову излучателю близки обычные диффузные отражатели (белая бумага).
Поскольку освещенность и светимость зачастую для внешнего наблюдателя неразличимы (например, свет от Луны), представляет интерес связь между Е и В. Рассмотрим сферу радиуса r, в центре которой находится площадка S, освещенная потоком Fвх и излучающая во все стороны поток Fвых (рис. 2.7). Тогда
dFвых = I d, где
I = BScos – сила света в направлении ;
В – яркость площадки S;
d - элемент пространственного угла («угловая щель»);
– по определению пространственного угла;
Sсф= 2r sin r d , тогда d = 2 sin .
Так что: dFвых = B S cos 2 sin.
Весь выходной поток:
,
с другой стороны: Fвх = E S, а Fвых = Fвх = E S
Приравнивая Fвых и Fвых, получим:
.
Если = 1, то В и Е – это одно и то же с точностью до множителя .
Или: – освещенность в фут-ламбертах;
освещенность в кд/фут, или кд/м2, т.е.
В = Е, где Е = фут-ламберт;
В = Е/, где Е = люкс, т.е. кд/м2.
Посмотрим, как связана освещенность задней стенки глаза (сетчатки) с яркостью соответствующего объекта. Заменим глаз одной линзой на месте роговицы (рис. 2.8), которая проецирует объект площадью S и яркостью L, находящийся на расстоянии R от центра линзы. На сетчатке изображение объекта имеет площадь . Сила света от объекта I = L S, а освещенность в плоскости зрачка составит .
Световой поток F, попадающий в глаз:
, где
q гл – площадь входного отверстия (зрачка) глаза,
гл – коэффициент пропускания глаза.
Этот световой поток F создает на ретине освещенность Е гл:
.
Отношение определяется расстоянием R и фокусным расстоянием глаза fгл: , так что . Тогда освещенность ретины: .
Для нас существенно отметить, что освещенность участка ретины определяется яркостью объекта, который проецируется на этот участок.
Обращает на себя внимание тот факт, что светотехнические единицы обычно слабо понимаются и запоминаются. Частично это объясняется дуализмом подхода (энергетический и фотометрический, т.е. физиологический), а также использованием большого количества названий светотехнических единиц, хотя многие из них связаны постоянными коэффициентами. Поэтому полезно некоторые из этих понятий и единиц собрать воедино и представить в виде таблиц.
Энергетические величины | Фотометрические величины | ||
Величина и ее связь с другими | Единица измерения | Величина и ее связь с другими | Единица измерения |
Поток излучения | Вт | Световой поток; F | люмен (лм) |
Энергетическая сила света | Вт/ср | Сила света | кандела (свеча) (кд) |
Энергетическая светимость | Вт/м2 | Светимость | лм/м2 |
Энергетическая яркость | Вт/ср м2 | Яркость | кд/м2 (нит) |
Энергетическая освещенность (плотность облучения) | Вт/м2 | Освещенность | люкс (лк) |
Достаточно очевидно, что люмен (лм) = 1/683 светового потока мощностью 1 Вт при длине волны = 555 нм. Кандела (свеча) (кд) = 1 лм внутри телесного угла, равного одному стерадиану (ср). Единицей яркости, кроме нита кд/м2, служит стильб (сб), который равен кд/см2.
Единицы яркости (в том числе и несамосветящихся объектов):
Единицы Единицы | Стильб кд/см2 | Свеча с кв.м (нит) | Апостильб (радлюкс) | Ламберт | Футлам- берт | Свеча с кв. дюйма |
Стильб (сб) | 1 | 104 | 31420 | 3,142 | 2919 | 6,452 |
Свеча с кв. метра (нит) (децимиллистильб) | 10-4 | 1 | 3,142 | 3,142 10-4 | 0,2919 | 6,45210-4 |
Апостильб (асб), радлюкс (рлк) | 3,183 10-5 | 0,3183 | 1 | 10-4 | 0,0929 | |
Ламберт (ламб) | 0,3183 | 3183 | 104 | 1 | 929 | 2,054 |
Футламберт (фламб) | 3,426 10-4 | 3,426 | 10,76 | 1,076 10-3 | 1 | 2,21 10-3 |
Свеча с кв. дюйма | 0,155 | 1550 | 4869 | 0,4869 | 452,4 | 1 |
Некоторые единицы в отечественной литературе не используются, однако еще имеют употребление в англоязычных материалах.
Подобная таблица полезна также для единиц освещенности:
Единицы Единицы | Люкс | Фот | Футсвеча | Люмен на ед. площади |
Люкс (лк) | 1 | 10-4 | 0,0929 | 1 лм/м2 |
Фот (ф) | 104 | 1 | 929 | 1 лм/см2 |
Футсвеча (фкд) | 10,764 | 0,001076 | 1 | 1 лм/фут2 |
Иногда употребляют также такую единицу освещенности, как фотон, которая определяет освещенность сетчатки глаза при наблюдении поверхности с яркостью 1 кд/м2 и площади зрачка 1 мм2.
Для практической ориентации проведем значения яркости некоторых объектов в нит:
Поверхность Солнца – 1,6 109
Наиболее яркая точка 60-Вт лампы накаливания с матовым стеклом – 120000
Наиболее яркие кучевые облака – 40000
Белая бумага под прямыми лучами Солнца – 30000
Ясное безоблачное небо – 7000
Яркие участки Луны – 7000
Белая бумага на столе – 85
Телевизионный растр – 70
Белая бумага при свете Луны – 0,03.
... федеральных каналах о событиях, происходящих в регионах России. Глава 3. Творческое взаимодействие федеральных и региональных телевизионных каналов 3.1. Структура, особенности содержания и место информационных программ регионального телевидения Информационные программы составляют основу вещания любого телеканала. По структуре информационной программы, ...
... журналисты должны будут противиться давлению манипуляторов, диктаторов, "изобретателей", стремящихся размыть границу между действительностью и фантазией". 2.2. Роль телевидения как средства формирования духовно- нравственных ценностей младших школьников. Человек 21 века живет в медиатизированном пространстве, которое составляет его новую среду обитания, реальность современной культуры. Средства ...
... проводит американскую политику (мягко говоря, настроенную против России), интерпретировало этот конфликт как агрессию России против Грузии. Тем самым сформировав соответствующее общественное мнение у населения. Мы указали всего три проблемы эффективности воздействия телевидения, но их гораздо больше (это и проблема трансляции насилия на телевидении и негативное влияние телевидения на здоровье ...
... было предложено широкое внедрение в практику визуальной грамотности в начальной, средней и высшей школе. В целом для развития американского медиаобразования период 70-х годов был довольно продуктивным. В 60-е годы в США появились кабельное телевидение и “общественная” сеть образовательного вещания. Эти новые возможности телевещания привлекли внимание художников, надеявшихся найти новые ...
0 комментариев