2.7. Частотные характеристики.
2.7.1 Определение частотных характеристик.
Известно, что динамические процессы могут быть представлены частотными характеристиками (ЧХ) путем разложения функции в ряд Фурье.
Предположим, имеется некоторый объект и требуется определить его ЧХ. При экспериментальном снятии ЧХ на вход объекта подается синусоидальный сигнал с амплитудой Авх = 1 и некоторой частотой w, т.е.
x(t) = Авхsin(wt) = sin(wt).
Тогда после прохождения переходных процессов на выходе мы будем также иметь синусоидальный сигналтой же частоты w, но другой амплитуды Авых и фазы j:
у(t) = Авыхsin(wt + j)
При разных значениях w величины Авых и j, как правило, также будут различными. Эта зависимость амплитуды и фазы от частоты называется частотной характеристикой. Виды ЧХ:
· АФХ - зависимость амплитуды и фазы от частоты (изображается на комплексной плоскости);
· АЧХ - зависимость амплитуды от частоты;
· ФЧХ - зависимость фазы от частоты;
· ЛАХ, ЛАЧХ - логарифмические АЧХ.
На комплексной плоскости входная величина x = Авх.sin(wt) для каждого момента времени ti определяется вектором х на комплексной плоскости. Этот вектор имеет длину, равную Авх, и отложен под углом wti к действительной оси. (Re - действительная ось, Im - мнимая ось)
Тогда величину х можно записать в комплексной форме
х(t) = Авх(cos(wt) + j.sin(wt)),
где j = - мнимая единица.
Или, если использовать формулу Эйлера eja = cosa + j.sina, то можно записать
х(t) = Авх.ejwt.
Выходной сигнал y(t) можно аналогично представить как вектор
y(t) = Авых.ej(wt+j).
Рассмотрим связь передаточной функции и частотной характеристики.
Определим производные по Лапласу:
у ® Y
у’ ® sY
у” ® s2Y и т.д.
Определим производные ЧХ:
у’(t) = jw Авыхеj(wt + j) = jw у,
у”(t) = (jw)2 Авыхеj(wt + j) = (jw)2 у и т.д.
Отсюда видно соответствие s = jw. Вывод: частотные характеристики могут быть построены по передаточным функциям путем замены s = jw.
Пример: .
При s = jw имеем:
= = = =
= - j = Re(w) + j Im(w).
Изменяя w от 0 до ¥, можно построить АФХ (см. рис.). ¨
Для построения АЧХ и ФЧХ используются формулы:
, .
Формулы получения АФХ по АЧХ и ФЧХ:
Re(w) = A(w) cos j(w),
Im(w) = A(w) sin j(w).
2.7.2 Логарифмические частотные характеристики.
Логарифмические частотные характеристики (ЛЧХ) используются довольно часто для описания динамических параметров различных устройств. Существуют два основных вида ЛЧХ, которые, как правило, используются совместно и изображаются в виде графиков:
1) ЛАЧХ - логарифмическая АЧХ.
Формула для построения ЛАЧХ: L(w) = 20.lg Aвых(w).
Единица измерения - децибел (дБ).
На графике ЛАЧХ по оси абсцисс откладывается частота в логарифмическом масштабе. Это означает, что равным величинам отрезков по оси w соответствуют кратные значения частоты. Для ЛЧХ кратность = 10.
По оси ординат откладываются значения L(w) в обычном масштабе.
2) ЛФЧХ - логарифмическая ФЧХ. Представляет из себя ФЧХ, у которой ось частоты w проградуирована в логарифмическом масштабе в соответствии с ЛАЧХ. По оси ординат откладываются фазы j.
Примеры ЛЧХ.
1. Фильтр низких частот (ФНЧ)
ЛАЧХ ЛФЧХ Пример цепи
Фильтр низких частот предназначен для подавления высокочастотных воздействий.
2. Фильтр высоких частот (ФВЧ)
ЛАЧХ ЛФЧХ Пример цепи
Фильтр высоких частот предназначен для подавления низкочастотных воздействий.
3. Заградительный фильтр.
Заградительный фильтр подавляет только определенный диапазон частот
ЛАЧХ и ЛФЧХ Пример цепи
.
3. Качество процессов управления.
3.1. Критерии устойчивости.
3.1.1 Устойчивость.
Важным показателем АСР является устойчивость, поскольку основное ее назначение заключается в поддержании заданного постоянного значения регулируемого параметра или изменение его по определенному закону. При отклонении регулируемого параметра от заданной величины (например, под действием возмущения или изменения задания) регулятор воздействует на систему таким образом, чтобы ликвидировать это отклонение. Если система в результате этого воздействия возвращается в исходное состояние или переходит в другое равновесное состояние, то такая система называется устойчивой. Если же возникают колебания со все возрастающей амплитудой или происходит монотонное увеличение ошибки е, то система называется неустойчивой.
Для того, чтобы определить, устойчива система или нет, используются критерии устойчивости:
1) корневой критерий,
2) критерий Стодолы,
3) критерий Гурвица,
4) критерий Найквиста,
5) критерий Михайлова и др.
Первые два критерия являются необходимыми критериями устойчивости отдельных звеньев и разомкнутых систем. Критерий Гурвица является алгебраическим и разработан для определения устойчивости замкнутых систем без запаздывания. Последние два критерия относятся к группе частотных критериев, поскольку определяют устойчивость замкнутых систем по их частотным характеристикам. Их особенностью является возможность применения к замкнутым системам с запаздыванием, которыми является подавляющее большинство систем управления.
... определенное время (период подготовки высококвалифицированного рабочего или специалиста). Взаимодействие государственных органов с заказчиками кадров призвано стимулировать гибкость и рационализацию управления образовательной системой, распределять между ними ответственность за процесс и качество профессиональной подготовки, сохраняя при этом единое образовательное пространство в государстве. ...
... на паритетных началах входят представители государственного органа управления образованием, соответствующего органа местного самоуправления и (или) местного (муниципального) органа управления образованием, действующих образовательных учреждений, общественности. Предметом и содержанием экспертизы является установление соответствия условий осуществления образовательного процесса, предлагаемых ...
... потом и на развитие. В этом ей следует в большей мере опереться на свой исторический выбор, отклонения от которого всегда приносили России беды и невзгоды. Глава 3. Тенденции изменения в социальном управлении Формирование гражданского общества на принципах корпоратизма поставит под контроль государство, публичную власть, которые все в большей мере будут выполнять свою главную функцию, ...
... и характеристиками организационных структур. Они построены на основе сбора, анализа и обработки эмпирических данных об организациях, функционирующих в сопоставимых условиях. Процесс проектирования организационной структуры управления должен быть основан на совместном использовании охарактеризованных выше методов. 2.3 Тенденции проектирования структур управления Рассмотрение принципиальных ...
0 комментариев