1.2. ВЫБОР ВЫСОКОАКТИВНОЙ И ХОРОШО ИЗУЧЕННОЙ В

ИММУНОЛОГИЧЕСКОМ ОТНОШЕНИИ МОДЕЛИ ВЕКТОРА-НОСИТЕЛЯ И КЛОНИРОВАНИЕ СООТВЕТСТВУЮЩЕГО ГЕНА

1.2.1. ПОЛУЧЕНИЕ РЕКОМБИНАНТНЫХ ДНК

Суть конструирования рекомбинантных ДНК заключается во встраивании фрагментов ДНК, среди которых находится интересую­щий нас участок ДНК, в так называемые векторные молекулы ДНК (или просто векторы) - плазмидные или вирусные ДНК, которые могут быть перенесены в клетки про- или эукариот и там автономно репли-цироваться. На следующем этапе проводится отбор тех клеток, кото­рые несут в себе рекомбинантные ДНК (с помощью маркерных призна­ков, которыми обладает сам вектор), и затем индивидуальных клонов с интересующим нас сегментом ДНК (используя признаки или пробы, специфичные для данного гена или участка ДНК).

При решении ряда научных и биотехнологических задач конст­руирование рекомбинантных ДНК требует также создания систем, в которых обеспечивается максимальная экспрессия клонируемого гена.

Существует три основных способа встраивания чужеродной ДНК в векторные молекулы. В первом случае 3'-концы фрагментов ДНК, среди которых находится интересующий нас участок ДНК (ген или его сегмент, регуляторный район), с помощью фермента терминальной нуклеотидилтрансферазы наращиваются гомополинуклеотидной последовательностью (например, поли (Т)). 3'-концы ли­нейной формы векторной ДНК тем же способом наращиваются комп­лементарной ей гомополинуклеотидной последовательностью (то есть по­ли (А)). Это позволяет соединить две молекулы ДНК путем комплемен­тарного спаривания искусственно полученных "липких" концов.

Во втором случае "липкие" концы создаются с помощью расщеп­ления молекул ДНК (как векторной, так и содержащей интересующий нас фрагмент) одной из эндонуклеаз рестрикции (рестриктаз). Рестриктазы характеризуются исключительно высокой специ­фичностью. Они "узнают" в ДНК последовательность из нескольких нуклеотидных остатков и расщепляют в них строго определенные межнуклеотидные связи. Поэтому даже в ДНК больших размеров рестриктазы вносят ограниченное число разрывов.

Третий способ представляет собой комбинацию двух первых, когда липкие концы ДНК, образованные рестриктазой, удлиняются синтетическими последовательностями (рис. 1).

Концы фрагментов ДНК можно превратить в "липкие", наращи­вая их двутяжевыми олигонуклеотидами ("линкерами"), в состав кото­рых входит участок узнавания рестрикта-

Рисунок 1. Схема конструирования рекомбинантной ДНК с помощью рестриктаз PstI и поли(G)- поли(С)-линкера.

зой. Обработка такого фраг­мента данной рестриктазой делает его пригодным для встраивания в векторную молекулу ДНК, расщепленную той же рестриктаэой. Часто в качестве "линкера" применяются полинуклеотидные фрагменты, ко­торые содержат специфические участки сразу для нескольких рестриктаз (их называют "полилинкерами").

После встраивания чужеродной ДНК в вектор их ковалентное сшивание осуществляется ДНК-лигазой. Если же размер бреши в рекомбинированной молекуле превышает одну фосфодиэфирную связь, она застраивается in vitro с помощью ДНК-полимеразы или in vivo с помощью репарирующих систем клетки.

1.2.2. ПОЛУЧЕНИЕ РЕКОМБИНАНТНЫХ РНК

Получение рекомбинантных РНК обычно осуществляют методами ферментативного или химического лигирования РНК. Кроме того, недавно появилась принципиально но­вая возможность встраивания сегмента РНК в заданное положение других молекул РНК с помощью рибозимов.

Ковалентное сшивание отдельных сегментов РНК при получении рекомбинантных молекул, как правило, осуществляют с помощью Т4 РНК-лигазы. Т4 РНК-лигаза закоди­рована в геноме бактериофага Т4. Ее выделяют из клеток E.coli, зараженных этим фагом. Фермент сшивает друг с другом однотяжевые олиго- и полирибонуклеотиды. Для работы Т4 РНК-лигазы необходим источник энергии - аденозинтрифосфат. На рис. 2 приведена схема ферментативного лигирования двух коротких олигонуклеотидов. Как видно из этой схемы, акцептором в реакции лигирования служит пол­ностью дефосфорилированный, а донором - полностью фосфорилированный по концевым нуклеотидным остаткам олигонуклеотид. Это предотвращает возможность сшивания однотипных олигонуклео­тидов.

Эффективность ферментативного лигирования достаточно длинных полирибонуклеотидов сильно варьирует и ее трудно предсказать исходя только из нуклеотидной последовательности сегментов РНК. Наилучшие результаты получены в тех случаях, когда сшиваемые концы полирибонуклеотидов были пространственно сближены за счет комплементарного связывания соседних с ними участков РНК.

Недавно было установлено, что протяженные сегменты РНК (длиной в 200-300 остатков) могут быть с высоким выходом сшиты Т4 ДНК-лигазой. При этом "стыковка" сегментов осуществляется с по­мощью олигодезоксирибонуклеотида, комплементарного 3'-концу одного сегмента и 5'-концу другого.

Метод химиче­ского лигирования основан на активации концевой фосфатной группы одного из двух сшиваемых сегментов РНК водорастворимым карбодиимидом или

Рисунок 2. Схема сшивания двух олигорибонуклеотидов с помощью Т4 РНК-лигазы.

BrCN. В случае BrCN реакция про­текает очень быстро и не сопровождается модификацией нуклеотид­ных остатков, хотя под действием карбодиимидов фосфодиэфирная связь образуется с более высоким выходом. Для того, чтобы обеспечить сближенность сшиваемых концевых нуклеотидных остатков в фрагментах РНК, было предложено использовать олигодезоксирибонуклеотиды, комп­лементарные обоим фрагментам в месте их стыка.

 Химическое лигирование РНК, как правило, проходит с существенно меньшим выходом, чем ферментативное. Однако оно позволяет получать рекомбинантные РНК с необычными типами межнуклеотидной связи (например, пирофосфатной) и необычными нуклеотидными остатками в месте стыка двух фрагментов.

Получение рекомбинантных РНК с помощью рибозимов основано на обратимости реакции самосплайсинга (при отсутствии гуанозина или гуаниловых нуклеотидов). Это предоставляет возможность для встраивания интронной РНК в заданный участок другого сегмента РНК (рис. 3). Фрагмент РНК, в который производится встраивание, должен содержать нуклеотидную последовательность, идентичную нуклеотидной последова­тельности 3'-концевого участка 5'-экзонного района 26S РНК и соот­ветственно комплементарную той нуклеотидной последовательности в интроне, которая отвечает за специфичность прямой реакции. Фраг­мент, в который производится встраивание, берется в избытке.

В настоящее время описанная здесь цепь реакций может быть реализована только для интронной РНК, получаемой из предшест­венника 26S РНК тетрахимены. Однако можно думать, что конструи­рование новых рибозимов может существенно расширить возможности этого подхода.


Информация о работе «Рекомбинантные вакцины (Генная инженерия)»
Раздел: Биология
Количество знаков с пробелами: 43921
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
96693
1
0

... олигонуклео­тидов—одну полуавтоматическую, а вторую в комплексе с компьютером. В 1982 г. цена этих приборов на американ­ском рынке составляла 36000—39500 долл.[2]. К открытиям связанным с достижениями генной инженерии нужно прибавить то, что огромный генетический «чертеж» многоклеточного существа просчитан полностью. Я думаю это можно назвать достижением века.  После восьми лет работы многих ...

Скачать
31514
2
3

... генно-инженерных исследований. Многие из этих вопросов были подняты самими учеными активно работающих в данной области. В настоящее время большинство исследователей считали, что опасения касающиеся, генной инженерии, не имеют достаточно оснований, но многие этические проблемы остаются нерешенными и продолжают возникать новые. В прошлом генетика и медицинская генетика развивалась как относительно ...

Скачать
57102
0
3

... при постановке биологических или медицинских экспериментов. Составлять его должны ведущие специалисты в этой области и знающие предмет юристы.   3. Другие применения генной инженерии Несмотря на успехи ученых в генной инженерии в таких отраслях, как создание генно-модифицированных продуктов и клонировании животных и человека, они на этом не останавливаются. В целях сохранения военного ...

Скачать
37995
0
6

... (например, семейства генов) необходимо провести клонирование ПЦР-продуктов в векторах типа М13, в результате каждый фаг будет со­держать только одну вставку. При прямом секвенировании смеси генов наблюдается несколько одинаково расположенных полос в разных дорожках геля. При амплификации же одного гена можно проводить прямое секвенирование, не прибегая к промежуточно­му субклонированию. Выбор ...

0 комментариев


Наверх