1.4. Биосорбенты и их применение
Проведено сравнительное экспериментальное изучение гиполипидемической активности сорбентов природного происхождения — микрокристаллической целлюлозы (МКЦ) и полифепана, а также синтетических сорбентов — волокнистого угля ваулена и сферических карбонатов СКНП-1 и СКНП-2 [26]. Для сравнения использовали известные желчные сорбенты холестирамин и вазозан (холестирамин, обогащенный пектином), а в опытах in vitro кроме того препараты пищевых волокон — пектин и метамуцил (США). Эти данные указывают на перспективность применения неспецифичных сорбентов природного происхождения.
Известно, что многие природные камеди растительного происхождения (аравийская камедь, индийский трагант, камедь плодов рожкового дерева и др.) обладают адсорбционной способностью. Камедь, получаемая из семян вечнозеленого дерева семейства бобовых Ceratonia celegua (каробан), является довольно хорошим сорбентом. В противоположность другим камедям, из нее не выделяются большие количества ионов калия, магния. По своему химическому составу каробан представляет линейный сополимер с элементарным звеном, состоящим из четырех молекул маннозы и одной молекулы галактозы. Молекулярная масса полимера — 310000 дальтон.
Разработан способ сорбции из водных растворов таких вредных веществ и соединений, как формальдегид, фенол, нитраты, нитриты, ионы свинца и др., в котором в качестве сорбентов использованы волокна из различного растительного сырья. Отмечено, что за процесс связывания указанных веществ ответственны положительно и отрицательно заряженные группировки лигнина, гемицеллюлоз, пектиновых и белковых веществ, входящих в состав волокон [41—55].
Волокна — сложный комплекс биополимеров линейной и разветвленной структуры с большой молекулярной массой. Присутствие первичных и вторичных гидроксильных (целлюлоза, гемицеллюлозы), фенольных (лигнин), карбоксильных групп (гемицеллюлозы, пектиновые вещества) обусловливает межмолекулярное взаимодействие (водородные связи) различной плотности упаковки, способность сорбировать воду и другие полярные молекулы и ионы. Поэтому для волокон характерны водоудерживающая способность, ионообменные и другие особенности. Волокна взаимодействуют с белками, ферментами, гормонами, продуктами распада углеводов, пептидами и аминокислотами, жирными и другими кислотами. Характер этих превращений зависит от состава волокон, содержания в них полимеров, их строения, взаимосвязи и плотности межмолекулярной упаковки, соотношения аморфных и кристаллических участков волокон [44, 45, 50].
Результаты оценки сорбционной способности волокон, выделенных из различных видов растительного сырья, показывают, что найдена новая группа сорбентов, обладающих как ионитной, так и молекулярной сорбцией. Они способны связывать ионы свинца, кадмия и других тяжелых металлов, нитраты, нитриты, аммиак, радионуклиды (стронций, цезий) и целый ряд органических веществ, в том числе фенолы, формальдегид, карбамид и другие.
Помимо сорбции экологически вредных веществ (ЭВВ), волокна снижают поступление в организм холестерина, используются при диабете [43—52]. Концентраты волокон, выделенные из различных видов растительного сырья, обладают разной способностью связывать ЭВВ. Очевидно, природные волокна оболочек гороха, жома сахарной свеклы, жмыха семян винограда и люцерны значительно превосходят по сорбции свинца такие известные сорбенты, как билигнин, полифепан, карболен. В меньшей мере они связывают нитраты, нитриты и в значительной — формальдегид, карбамид и другие вещества.
Основным сорбирующим началом в природных волокнах является лигнин. Эффективен комплекс целлюлозы с гемицеллюлозами. Целлюлоза обладает хорошей сорбционной способностью по отношению к нитратам, карбамиду, меньшей — к другим ЭВВ.
Целесообразно продолжение работ, направленных на определение максимальной адсорбционной емкости природных волокон, влияния экспозиции на интенсивность процесса адсорбции, температурного фактора, рН среды и др.
Например, крилан является высокомолекулярным гетерополисахаридом. Это продукт микробного синтеза, содержащий карбоксильные группы; его основная цепь состоит из β-1,3-связанного маннана, а боковые цепочки представлены ксилозой и глюкуроновой кислотой, присоединенными к основной цепи гликозидными связями [56].
Изучена возможность использования фитомеланина подсолнечной лузги для деметаллизации и контроля содержания некоторых тяжелых металлов в жидкой консервированной продукции [57]. Фитомеланин получали из исходного сырья и использовали в водорастворимой аммонийной форме. Авторы исследовали основные закономерности процесса взаимодействия фитомеланина со свинцом (II), медью (II), железом (III), хромом (III). С этими металлами фитомеланин образует нерастворимые в воде соединения. Методом латинских квадратов установлены оптимальные условия создания этих комплексов.
Известно, что микроорганизмы, в том числе дрожжи, способны извлекать из среды катионы тяжелых металлов [58]. Особое значение во взаимодействии последних с дрожжевыми клетками имеют клеточные стенки. Препарат на основе клеточных оболочек пекарских дрожжей Sacch. сerevisiae был разработан во Франции и использован как эффективное средство активации спиртового брожения [59]. Высокая стоимость этого препарата стимулировала работы по созданию его аналогов, один из которых был разработан в МГАПП совместно с НИИсинтезбелка. Созданный биосорбент [60] и его модификации успешно использованы для активации спиртового брожения, детоксикации сусла и виноматериалов, содержащих остатки пестицидов, а также для профилактики и устранения покоричневения белых столовых виноматериалов и соков. Биосорбент представляет собой специально обработанные клеточные оболочки дрожжей Pichia membranafaciens, являющиеся побочным продуктом производства цитохрома С [38].
0 комментариев