11. Законы двойного отрицания, контрапозиции, приведения к абсурду и косвенного доказательства

Законом двойного отрицания называется закон логики, позволяющий отбрасывать двойное отрицание. Этот закон можно сформулироватьтак: отрицание отрицания дает утверждение, или: повторенное дважды отрицание дает утверждение. Например: «Если неверно, что Вселенная не являтся бесконечной, то она бесконечна». В символической форме закон записывается так: ~ ~ A→A, если неверно, что не-A, то верно A.

Законы контрапозиции говорят о перемене позиций высказываний с помощью отрицания: из условного высказывания «если есть первое, то есть второе» вытекает «если нет второго, то нет и первого», и наоборот. Символически:

(A→B)→(~B→~ A), если дело обстоит так, что если A, то B, то если не-B, то не-A;

(~B→~A)→(A→B), если дело обстоит так, что если не-B, то не-A, то если A, то B.

К примеру: из высказывания «Если есть следствие, то есть и причина» следует высказывание «Если нет причины, нет и следствия», и из второго высказывания вытекает первое.

К законам контрапозиции обычно относят также законы:

(A→~ B) →(B→~A), если дело обстоит так, что если A, то не-B, то если B, то не-A. Например, «Если квадрат не является треугольником, то треугольник не квадрат»;

(~ A →B) → (~B→ A), если верно, что если не-A, то B, то если не-B, то A. К примеру: «Если не являющееся очевидным сомнительно, то не являющееся сомнительным очевидно».

Редукция к абсурду (приведение к нелепости) – это рассуждение, показывающее ошибочность какого-то положения путем выведения из него абсурда, т. е. логического противоречия. Если из высказывания А выводится как высказывание В, так и его отрицание, то верным является отрицание А. Например, из высказывания «Треугольник – это окружность» вытекает с одной стороны то, что треугольник имеет углы, с другой, что у него нет углов; следовательно, верным является не исходное высказывание, а его отрицание «Треугольник не является окружностью». Закон приведения к абсурду представляется формулой:

(A→B)&(A→~B)→~A, если (если А, то В) и (если А, то не-В), то не-А.

Частный закон приведения к абсурду представляется формулой:

(A→~A)→~A, если (если А, то не-А). Например, из положения «Всякое правило имеет исключения», которое само по себе является правилом, вытекает высказывание «Есть правила, не имеющие исключений»; значит, последнее высказывание истинно.

Закон косвенного доказательства позволяет заключить об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Например, «Если из того, что 17 не является простым числом, вытекает как то, что оно делится на число отличное от самого себя и единицы, так и то, что оно не делится на такое число, то 17 есть простое число. Символически закон косвенного доказательства записывается так:

(~A→~B)&(~A→~B)→A, если (если не-А, то В) и (если не-А, то не-В), то А.

Законом косвенного доказательства обычно называется и формула:

(~A→(B& ~B))→A, если (если не-А, то В и не-В), то А. К примеру: «Если из того, что 10 не является простым числом, вытекает, что оно делится и не делится на 2, то 10 – четное число».

12. Законы де Моргана

Законы де Моргана позваляют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот:

~ (A&B) → (~Av~ B), если неверно, что есть и первое, и второе, то неверно, что есть первое, или неверно, что есть второе:

(~ Av ~B) → ~ (A&B), если неверно, что есть первое, или неверно, что есть второе, то неверно, что есть первое и второе. Используя эти законы, от высказывания «Неверно, что изучение логики и трудно, и бесполезно» можно перейти к высказыванию «Изучение логики не является трудным, или же оно не бесполезно». Объединение этих двух законов дает закон (↔ - эквивалентность, «если и только если»):

~ (A&B) ↔ (~Av ~ B).

Словами обычного языка этот закон можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний.

Еще один закон де Моргана утверждает, что отрицание дизъюнкции эквивалентно конъюнкции отрицаний:

~ (A v B) ↔ (~A & ~B),

неверно, что есть первое или есть второе, если и только если неверно, что есть первое, и неверно, что есть второе. Например: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии».

На основе законов де Моргана связку «и» можно определить, используя отрицание, через «или», и наоборот:

- «А и В» означает «неверно, что не-А или не-В»,

- «А или В» означает «неверно, что не-А и не-В».

К примеру: «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня

холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро».


Информация о работе «Экзаменационные билеты»
Раздел: Логика
Количество знаков с пробелами: 33501
Количество таблиц: 6
Количество изображений: 3

Похожие работы

Скачать
511492
0
0

... Leipzig?3) Wodurch ist Leipzig als Musikstadt bekannt?4) Welchen historischen Ereignissen ist das Vцlkerschlachtdenkmal gewidmet? Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ПКВЯЗ. НЕМЕЦКИЙ ЯЗЫК. ДОМАШНЕЕ ЧТЕНИЕ Билет № 20 THEMA. „Dornrцschen“ ― J. und W. Grimm.1) Aus welchen AnlaЯ veranstaltete der Kцnig ein Fest in seinem SchloЯ?2) ...

Скачать
760921
0
0

... озвончения в середине слова после безударного гласного в словах французского происхождения. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ИСТОРИЯ АНГЛИЙСКОГО ЯЗЫКА И ВВЕДЕНИЕ В СПЕЦФИЛОЛОГИЮ Билет № 12 Дайте лингвистическую характеристику "Младшей Эдды". Проанализируйте общественные условия национальной жизни Англии, ...

Скачать
302955
0
0

... . В.С. Мерлин о структуре личности. Требования к помещению и оборудованию экспериментального обследования. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ЭКСПЕРИМЕНТАЛЬНАЯ ПСИХОЛОГИЯ Билет № 18 Фундаментальное и прикладное исследование: сущность и отличие. Поисковый (эксплораторный) эксперимент и его использование. ...

Скачать
85952
0
0

... = πR2, L = 2πR). 28) Критерии выбора конфигурации персонального компьютера. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ИНФОРМАТИКА. РАСШИРЕННЫЙ КУРС Билет № 9 29) Что называется связью «один к одному»? Определите тип связи между объектами предметной области Институт: ...

0 комментариев


Наверх