Билеты по аналитической геометрии

23223
знака
0
таблиц
55
изображений

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.

Пусть задана система векторов а1, а2, а3,…,ал (1) одной размерности.

Определение: система векторов (1) называется линейно-независимой, если равенство 1а1+2а2+…+лал=0 (2) выполняется лишь в том случае, когда все числа 1, 2,…, л=0 и R

Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном i0 (i=1,…,k)

Свойства

Если система векторов содержит нулевой вектор, то она линейно зависима

Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.

Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.

Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.

Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.

Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.

Теорема: Если заданы два вектора a и b, причем а0 и эти векторы коллинеарны, то найдется такое действительное число , что b=a.

Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллинеарны.

Доказательство: достаточность. Т.к. векторы коллинеарны, то b=a. Будем считать, что а,b0 (если нет, то система линейно-зависима по 1 свойству). 1b-a=0. Т.к. коэфф. При b0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы. а+b=0, 0. а= -b/*b. а и b коллинеарны по определению умножения вектора на число.

Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.

Дано: a, b, c – линейно-зависимы. Доказать: a, b, c – компланарны. Доказательство: т.к. векторы линейно-зависимы, то а+b+c=0, 0. с= - /*а - /*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.


БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.

1. Определение: пусть задана некоторая система векторов. Базисом этой системы называется мах. совокупность линейно-независимых векторов системы.

В множестве векторов на прямой базис состоит из одного ненулевого вектора.

В качестве базиса множества векторов на плоскости можно взять произвольную пару.

В множестве векторов в трехмерном пространстве базис состоит из трех некомпланарных векторов.

2. Прямоугольная (декартова) система координат на плоскости определяется заданием двух взаимно перпендикулярных прямых с общим началом и одинаковой масштабной ед. на осях.

Прямоугольная (декартова) система координат в пространстве определяется заданием трех взаимно перпендикулярных прямых с общей точкойпересечения и одинаковой масштабной ед. на осях.


СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: скалярным произведением двух векторов называется произведение длин двух векторов на косинус угла между ними.

(а,b)=|a| |b| cos u, u90, пр-е отриц.

Свойства:

(а,b)= (b,а)

(а,b)=  (а,b)

(а+b,с)= (а,с)+ (b,с)

(а,а)=|a|2 – скал.квадрат.

Определение: два вектора называются ортоганальными, когда скалярное пр-е равно 0.

Определение: вектор называется нормированным, если его скал.кв.равен 1.

Определение: базис множества векторов называется ортонормированным, если все векторы базиса взаимно-ортагональны и каждый вектор нормирован.

Теорема: Если векторы а и b заданы координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений соответствующих координат.

Найдем формулу угла между векторами по определению скалярного произведения. cos u=a,b/|a||b|=x1x2+y1y2+z1z2/sqrt(x12+y12+z12)*sqrt(x22+y22+z22)


ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

Определение: векторным произведением двух векторов a и b обозначаемым [a,b] называется вектор с удовлетворяющий след. требованиям: 1. |c|=|a||b|sin u. 2. (с,а)=0 и (с,b)=0. 3. а, b, с образуют правую тройку.

Свойства:

[a,b]= - [b,a]

[а,b]=  [а,b]

[a+b,c]=[a,c]+[b,c]

[a,a]=0

Теорема: Длина векторного произведения векторов равна площади параллелограмма построенного на этих векторах.

Доказательство: справедливость теоремы вытекает из первого требования определения векторного произведения.

Теорема: Пусть векторы а и b заданы координатами в ортонормированном базисе, тогда векторное произведение равно определителю третьего порядка в первой строке которого наход-ся базисны векторы, во второй – координаты первого вектора, в третьей – координаты второго.

Определение: ортой вектора а называется вектор ед. длины имеющий одинаковое направление с вектором а. ea=a/|a|


РАЗЛИЧНЫЕ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ.

1.Общее ур-е пр. 2. Ур-е пр. в отрезках. 3. Каноническое ур-е пр. 4. Ур-е пр. ч/з две точки. 5. Ур-е пр. с углов. коэфф. 6. Нормальное ур-е прямой. Расст. от точки до прямой. 7. Параметрическое ур-е пр. 8. Пучок пр. 9.Угол между пр.

Ах+By+C=0 (1), где A, B одновр.не равны нулю.

Теорема: n(A,B) ортоганален прямой заданной ур-ем (1).

Доказательство: подставим коорд. т.М0 в ур-е (1) и получим Ах0+By0+C=0 (1’). Вычтем (1)-(1’) получим А(х-х0)+B(y-y0)=0, n(A,B), М0М(х-х0, y-y0). Слева в полученном равенстве записано скалярное произведение векторов, оно равно 0, значит n и M0M ортоганальны. Т.о. n ортоганлен прямой. Вектор n(A,B) называется нормальным вектором прямой.

Замечание: пусть ур-я А1х+B1y+C1=0 и А2х+B2y+C2=0 определяют одну и ту же прямую, тогда найдется такое действительное число t, что А1=t*А2 и т.д.

Определение: если хотя бы один из коэффициентов в ур-ии (1) =0, то ур-е называется неполным.

1. С=0, Ах+By=0 – проходит ч/з (0,0)

2. С=0, А=0, By=0, значит у=0

3. С=0, B=0, Ах=0, значит х=0

4. А=0, By+C=0, паралл. ОХ

5. B=0, Ах+C=0, паралл. OY

x/a+y/b=1.

Геом.смысл: прямая отсекает на осях координат отрезки а и b

x-x1/e=y-y1/m

Пусть на прямой задана точка и напр. вектор прямой (паралл.пр.). Возьмем на прямой произв. точки. q и M1М(х-х1; y-y1)

x-x1/x2-x1=y-y1/y2-y1

Пусть на прямой даны две точки М1(x1;y1) и М2(x2;y2). Т.к. на прямой заданы две точки, то задан направляющий вектор q(x2-x1; y2-y1)

y=kb+b.

u – угол наклона прямой. Tg угла наклона называется угловым коэффициентом прямой k=tg u

Пусть прямая задана в каноническом виде. Найдем угловой коэффициент прямой tg u = m/e. Тогда видим x-x1/e/e=y-y1/m/e. y-y1=k(x-x1) при y1-kx1=b, y=kx+b

xcos+ysin-P=0

 - угол между вектором ОР и положительным напр. оси ОХ.

Задача: записать ур-е прямой , если изветны Р и 

Решение: Выделим на прямой ОР вектор ед. длины n. |n|=1, n(cos, sin). Пусть М(x,y) – произв.точка прямой. Рассмотрим два вектора n и ОМ. Найдем двумя способвами их скал.произведение. 1. ОМ*n=|OM||n|cosMOP=Р. 2. ОМ*n=cosx+siny. Приравняем правые части.

Задача: прямая задана общим ур-ем. Перейти к норм. виду.

Ах+By+C=0

xcos+ysin-P=0

т.к. уравнения определяют одну прямую, то сущ. коэфф. пропорциональности.

Cos2=(A*t)2

Sin2=(B*t)2

-p=C*t

cos2+sin2=t2(A2+B2), t2=1/A2+B2, t=sqrt(1/ A2+B2). Sign t= - sign C

Что бы найти нормальное уравнение прямой нужно общее ур-е умножить на t.

Аtх+Bty+Ct=0, t-нормирующий множитель.


7. Система: x=et+x1 и y=mt+y1


НОРМАЛЬНОЕ УРАВНЕНИЕ ПРЯМОЙ. Расстояние от точки до прямой.


Информация о работе «Билеты по аналитической геометрии»
Раздел: Математика
Количество знаков с пробелами: 23223
Количество таблиц: 0
Количество изображений: 55

Похожие работы

Скачать
29198
0
0

... поверхность второго порядка определяет следующее уравнение: 4x2 – y2 – z2 – 4xz =2? Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Билет № 26 121.           Напишите условие параллельности прямых на плоскости, заданных уравнениями с угловыми ...

Скачать
301922
14
0

... и это также под контролем, так как внеклассные интересы якобы отвлекали детей от занятий, и учащихся окружали всевозможные запреты. Таким образом, культурно-бытовой облик учащихся начальной и средней школы в XIX – начале XX века отличали две его специфические черты: возраст учащихся (они постоянно находились в стадии развития) и попытки непрерывного контроля над этим развитием самого учебного ...

Скачать
42089
3
0

... 361. -370. Вычислить тройной интеграл по области V, ограниченной заданными поверхностями.     371. -380. Вычислить криволинейный интеграл второго рода вдоль заданной линии (для незамкнутых кривых направление обхода соответствует возрастанию параметра t или переменной x; для замкнутых кривых направление предполагается положительным).  L– отрезок прямой, ...

Скачать
191052
0
0

... зарождения и восприятия знаний от социокультурного контекста ·      Изучить роль личности, её индивидуального пути в становлении самой науки. 2.    Периодизация истории психологии. См. билет 1 вопрос 1   Билет 3. 1.    Возникновение и противостояние идеалистического и материалистического взглядов на природу психического в древности. Появление психологии в Древней Греции на рубеже VII ...

0 комментариев


Наверх