Геометрия чисел

19400
знаков
0
таблиц
3
изображения
Введение. Возникновением теории чисел мы, по большому счёту, обязаны Минковскому. Минковский (Minkowski), Герман - выдающийся математик (1864 - 1909), еврей, родом из России. Был профессором в Бонне, Кенигсберге, Цюрихе и Геттингене. Сблизил теорию чисел с геометрией, создав особое учение о "геометрии чисел" ("Geometrie der Zahlen", 1896 - 1910; "Diophantische Approzimationen", 1907, и др.). Последняя его работа: "Raum und Zeit" (Лейпциг.,1909; несколько русских переводов); здесь дана смелая математическая формулировка так называемого "принципа относительности". Полное собрание сочинение Минковского вышло в Лейпциге, в 1911 г.; биография Минковского в русском издании "Пространство и время". Таким образом, Минковский сделал большой вклад в развитие математики как науки. В частности, он сумел упростить теорию единиц полей алгебраических чисел, а также упростил и развил теорию аппроксимации иррациональных чисел рациональными, или теорию диофантовых приближений. Под диофантовыми приближениями в данном случае понимается раздел теории чисел, изучающий приближения действительных чисел рациональными и вопросы, связанные с решением в целых числах линейных и нелинейных неравенств с действительными коэффициентами. Это новое направление, которое Минковский назвал „геометрией чисел", развилось в независимый раздел теории чисел, имеющий много приложений в самых различных вопросах и вместе с тем достаточно интересный для самостоятельного изучения.

Постановка задачи.

Для начала я хочу рассмотреть некоторые понятия и результаты, играющие в дальнейшем основную роль. Рассуждения, которыми мы здесь пользуемся, иногда значительно отличаются от рассуждений в основных книгах по данному вопросу, так как в данной работе мы имеем целью, не давая полных доказательств, сделать для простейших случаев геометрическую ситуацию интуитивно ясной, тогда как позднее мы будем вынуждены жертвовать наглядностью ради точности. В работе рассматривается основная задача геометрии чисел, приводится теорема Минковского с её доказательством, и объясняются такие понятия геометрии чисел как решётки и критические решётки. В конце работы приводится так называемая «неоднородная задача» геометрии чисел.


Основная задача геометрии чисел.

Основной и типичной задачей геометрии чисел является сле­дующая задача.

Пусть f(х1,…,xn) — функция вещественных аргументов, прини­мающая вещественные значения. Как мал может быть f(u1,…,un) при подходящем выборе целых чисел u1,…,un? Может встретиться тривиальный случай f(0,…,0)=0, например, если f(х1,…,xn) является однородной формой; в этом случае совокупность значений u1 = u2 = ... = un = 0 из рассмотрения исключается (“однородная проблема”).

Обычно рассматриваются оценки, применимые не только для кон­кретных функций f, но и для целых классов функций. Так, типичным результатом такого рода является следующее предложение. Пусть

f(x1,x2) = a11x12 + 2a12x1x2 + a22x22 (1)

- положительно определённая квадратичная форма. Тогда найдутся такие целые числа u1,u2, не равные одновременно нулю, что справедливо неравенство

f(u1,u2)  (4D/3)1/2 (2)

где D = a11a22 – a122 – определитель формы. Ясно, что если этот результат верен, то он является наилучшим. Действительно,

u12 + u1u2 + u22  1

для всех пар целых чисел u1,u2, не равных одновременно нулю; здесь D = 3/4.

Конечно, случай положительно определённых бинарных квадратичных форм крайне прост, и результат задачи был известен задолго до возникновения геометрии чисел. Однако на положительно определённых бинарных квадратичных формах относительно просто проводятся некоторые рассуждения геометрии чисел, так что эти формы удобно использовать в качестве иллюстрации всех рассуждений.

Только что сформулированный результат можно выразить на­глядно. Неравенство типа

f(x1,x2)  k,

где f(x1,x2) — форма (1), а k — некоторое положительное число, задает область  плоскости {x1,x2}, ограниченную эллипсом. Таким образом, наше предложение утверждает, что если k  (4D/3)1/2, то область  содержит точку (u1,u2) с целыми координатами u1 и u2, не равными одновременно нулю.


Теорема Минковского.

Аналогичный, но, правда, не настолько точный результат немедленно следует из основной теоремы Минковского. В двумерном случае эта теорема утверждает, что область  всегда содержит точку (u1,u2) с целыми координатами, отличную от начала, если эта область удовлетворяет следующим трем условиям:

область  симметрична относительно начала координат; т. е. если точка (x1,x2) находится в , то точка (-x1,-x2) также содержится в ;

область  выпукла; т. е. если (x1,x2), (y1,y2) — две какие-нибудь точки области , то и весь отрезок

{x1 + (1-)y1, x2 + (1-)y2}, 0    1,

соединяющий эти точки, также содержится в ;

3) площадь  больше 4.

Любой эллипс f(x1,x2)  k удовлетворяет условиям 1) и 2). Так как его площадь равна

k / (a11a22 – a12)1/2 = k / D1/2,

то он удовлетворяет условию 3), если k > 4D1/2. Таким образом, мы имеем результат, аналогичный приведенному выше предложению, если в (2) константу (4/3)1/2 заменить любым числом, большим 4/.


Доказательство теоремы Минковского.

Интересно будет кратко рассмотреть основные идеи, лежащие в основе доказательства теоремы Минковского, потому что в формальных доказательствах, приводимых основными источниками, они заслоняются необходимостью получения сильных теорем, имеющих наиболее широкие приложения.

Вместо области  Минковский рассматривает область  = /2, которая состоит из точек (x1/2,x2/2), где (x1,x2)  точки области . Таким образом, область  симметрична относительно начала координат и выпукла, её площадь равна четверти площади области  и, следовательно, больше 1. В общем случае Минковский рассматривает совокупность областей  (u1,u2) с центрами в целочисленных точках (u1,u2), полученных из тела  параллельными переносами.

Для начала справедливо отметить, что если  и (u1,u2) пересекаются, то точка (u1,u2) находится в . Обратное утверждение тривиально. Если точка (u1,u2) находится в , то точка (u1/2,u2/2) содержится как в , так и в (u1,u2). Действительно, пусть (ξ1, ξ2) – точка, лежащая в пересечении. Так как точка (ξ1, ξ2) лежит в области (u1,u2), то тогда точка (ξ1 – u1, ξ2 – u2) лежит в области ; следовательно, ввиду симметрии области  точка (u1 - ξ1, u2 - ξ2) находится в . Наконец, в силу выпуклости тела  середина отрезка, соединяющего точку (u1 - ξ1, u2 - ξ2) с точкой (ξ1, ξ2), то есть точка (u1/2,u2/2), лежит в , а потому точка (u1,u2) находится в . Что, собственно, и требовалось доказать. Ясно, что область (u1,u2) тогда и только тогда пересекается с областью (u1,u2), когда область  пересекается с об­ластью (u1 - u1, u2 - u2).

Таким образом, чтобы теорема Минковского была доказана, достаточно показать, что если области (u1,u2) не пересекаются, то площадь области (u1,u2) не превышает 1. Небольшое размышление убеждает, что так должно быть. Другое обоснование, возможно интуитивно более ясное, можно получить, полагая, что область  целиком содержится в квадрате

‌ x1‌ ≤ X, |x2| ≤ X,

при этом нужно учитывать то, что выпуклая область конечной площади ограничена.

Пусть U — достаточно большое целое число. Существует (2U + 1)2 областей (u1,u2), координаты центров которых удовлетворяют неравенствам

‌ u1‌ ≤ U, |u2| ≤ U.

Все эти области целиком находятся в квадрате

‌ x1‌ ≤ U + X, |x2| ≤ U + X,

площадь которого равна

4 (U + X)2.

Так как предполагается, что области (u1,u2) не пересекаются, то имеет место неравенство

(2U + 1)2V  4(U + X)2,

где V – площадь области , а значит, и любой области (u1,u2). Устремляя теперь U к бесконечности, мы получаем неравенство V  1, что и требовалось доказать.


Решётки.

Преобразование координат в приведённом примере с определённой бинарной квадратичной формой может привести и к другой точке зрения. Мы можем представить форму f(x1,x2) как сумму квадратов двух линейных форм

f(x1, x2) = Х12 + Х22, (3)

где

Х1 = x1 + x2, X2 = x1 + x2, (4)

,,, - некоторые постоянные вещественные числа. Можно, например, положить

 = a111/2,  = a11-1/2a12,

 = 0,  = a11-1/2D1/2.

Обратно, если ,,, - такие вещественные числа, что  -   0, и формы Х1, Х2 заданы равенствами (4), то выражение

Х12 + Х22 = a11x12 + 2a12x1x2 + a22x22,

где

a11 = 2 + 2,

a12 =  + , (5)

a22 = 2 + 2,

является положительно определен­ной квадратичной формой с определителем

D = a11a22 – a122 = ( - )2. (6)

Теперь будем рассматривать пару (Х1, Х2) как систему пря­моугольных декартовых координат. Тогда говорят, что точки (Х1, Х2), соответствующие целым (x1, x2) в выражениях (4), образуют (двумерную) решетку . В векторных обозначениях решетка  есть совокупность точек

1, Х2) = u1(,) + u2(,), (7)

где u1, u2 пробегают все целые числа; точки (векторы) (,) и (,) образуют базис решётки .


Рассмотрим теперь более подробно свойства решеток. Ввиду того, что мы рассматриваем решетку  просто как множество точек, мы можем её описать с помощью различных базисов. Например, пара

(α – β, γ – δ), (- β, - δ)

является другим базисом решётки . Фиксированный базис (α, β), (γ, δ) решётки  определяет разбиение плоскости двумя семействами равноудалённых параллельных прямых; первое семейство состоит из тех точек (Х1, Х2), которые имеют координаты вида (7), где u2 – любое целое число, а u1 – любое вещественное. Для линий второго порядка семейства u1 и u2 меняются ролями. Таким образом, плоскость разбивается на параллелограммы, вершинами которых являются как раз точки решётки .

Разумеется, что это разбиение зависит от выбора базиса. Однако, можно показать, что площадь получаемых параллелограммов, именно число

|αδ – βγ|,

не зависит от выбора базиса. Это становится возможным, если показать, что число N(X) точек решётки в достаточно большом квадрате

ζ (Х): |Х1| ≤ Х, |Х2| ≤ Х

удовлетворяет соотношению

N(X) / 4X2 → 1 / |αδ - βγ| (X → ∞).

Действительно, рассмотрение идей доказательства теоремы Минковского о выпуклом теле, которое было приведено в кратком виде выше, показывает, что число точек решётки  в квадрате ζ (Х), грубо говоря, равно числу параллелограммов, находящихся в этом квадрате. А это число, в свою очередь, приблизительно равно площади квадрата ζ (Х), делённой на площадь |αδ - βγ| одного параллелограмма. Строго положительное число

d () = |αδ - βγ| (8)

называется определителем решётки . Как было только что показано, это число не зависит от выбора базиса.


Критические решётки.

Используя введённые выше новые понятия, можно заметить, что утверждение о существовании целых решений неравенства f(х12)  (4D/3)1/2 эквивалентно утверждению о том, что любая решётка  в области

Х12 + Х22 ≤ (4/3)1/2 d() (9)

имеет точки, отличные от начала координат. В силу однородности это в свою очередь эквивалентно утверждению, что открытый круг

Đ: Х12 + Х22 < 1 (10)

содержит точку каждой решётки , для которой d() < (3/4)1/2. А тот факт, что существуют такие формы, для которых в (2) знак равенства необходим, эквивалентен существованию решётки с с определителем d(с) = (3/4)1/2, не имеющей точек в круге Đ. Таким образом, задача о произвольной определённой бинарной квадратичной форме эквивалентна задаче о фиксированной области Đ и произвольной решётке. Аналогично исследование решёток с точками в области

| Х1 Х2| < 1

даёт информацию о минимумах inf |f(u1,u2)| неопределённых бинарных квадратичных форм f(x1,x2). Здесь точная нижняя граница берётся по всем целым числам u1 и u2, не равным одновременно нулю. Примеры можно продолжить.

Подобные рассмотрения приводят к следующим определениям. Говорят, что решётка  допустима для области (точечного множества)  в плоскости {Х12} если она не содержит никаких других точек , кроме, может быть, начала координат. Последний случай возможен, когда начало координат является точкой области . Тогда мы говорим, что эта решётка -допустима. Точная нижняя грань Δ() определителей d(Λ) всех -допустимых решёток является константой области . Если -допустимых решёток не существует, то полагаем, что Δ() = ∞. Тогда любая решётка Λ, для которой d(Λ) < Δ(), обязательно содержит точку области , отличную от начала координат. -допустимая решётка Λ, для которой d(Λ) = Δ(), называется критической (для ). Конечно, критические решётки, вообще говоря, существуют не всегда.

Важность критических решёток была замечена уже Минковским. Если с – критическая решётка области , а решётка Λ получена из Λс небольшой деформацией (то есть малым изменением пары базисных векторов), то либо решётка Λ имеет точку, отличную от начала координат и лежащую в области , либо d(Λ) ≥ d(Λс). Либо и то, и другое вместе.

В качестве примера можно снова рассмотреть открытый круг

Đ: Х12 + Х22 < 1.

Предположим, что Λс – критическая решётка области Đ. Ниже будет дан набросок доказательства того, что если критическая решётка существует, то она должна иметь три пары точек (А1, А2), (В1, В2), (С1, С2) на границе Х12 + Х22 = 1 круга Đ.

Если Λс не имеет точек на окружности Х12 + Х22 = 1, то можно будет получить Đ-допустимую решетку с меньшим определителем, гомотетически сжимая решетку Λс к началу координат, то есть рассматривая решетку  = tΛс точек (tX1, tX2), где (Х1, Х2)  Λс , а t — это фикси­рованное число с условием 0 < t < 1. Тогда d() = t2d(c) < d(c) и, очевидно,  будет Đ-допустимой решеткой, если t достаточно близко к 1. Таким образом, решетка c содержит пару точек на окружности Х12 + Х22 = 1, координаты которых после надлежащего поворота осей мы можем считать равными ± (1, 0).

Если бы на окружности Х12 + Х22 = 1 не было бы больше точек решетки c, то мы смогли бы получить Đ-допустимую решетку  с меньшим определителем, сжимая решетку c в направлении, пер­пендикулярном оси X1, то есть принимая за  решетку точек (Х1, tХ2), где (Х1, Х2)  Λс, а t достаточно близко к 1.

Наконец, если бы Λс имела бы только две пары точек ±(1, 0), ± (В1, В2) на границе, то решетку можно было бы слегка деформиро­вать так, чтобы точка (1, 0) осталась на месте, а точка с координатами (В1, В2) продви­нулась бы вдоль окружности Х12 + Х22 = 1 ближе к оси Х1. Наглядно это представлено на рисунке:

Данная операция, как легко проверить, уменьшает определитель, и при небольших деформациях получающаяся решётка Λ остаётся Đ-допустимой. Действительно, (1,0) и (В1, В2) можно рассматривать как базис решётки Λс, так как треугольник с вершинами (0, 0), (1, 0), (В1, В2), а следовательно, и параллелограмм, отвечающий базису (1, 0), (В1, В2) не содержит внутри себя точек Λс. Тогда критическая решётка Λс (если она существует) должна иметь три пары точек на окружности Х12 + Х22 = 1. Легко увидеть, что единственной решеткой, у которой три пары точек лежат на окружности Х12 + Х22 = 1, а одна из пар есть пара ± (1, 0), является решетка Λ ́ с базисом

(1, 0), (1/2, √3/4).

Она содержит вершины правильного шестиугольника

± (1, 0), ± (1/2, √3/4), ±(-1/2, √3/4),

лежащие на окружности Х12 + Х22 = 1, но не содержит ни одной точки (кроме (0, 0)) в круге Х12 + Х22 < 1. Таким образом, мы по­казали, что если Đ имеет критическую решетку, то Δ(Đ) = d(Λ ́) = (3/4)1/2. Минковский показал, что критические решетки существуют для довольно широкого класса областей , показав, грубо говоря, что любую -допустимую решетку Λ можно постепенно деформи­ровать до тех пор, пока она не станет критической.


“Неоднородная задача”

Другим общим типом проблемы является следующая типичная «неоднородная задача». Пусть f(х1,…,xn) — некоторая вещественнозначная функция вещественных аргументов х1, . . ., хn. Требуется подобрать постоянное число k со следующим свойством: если ξ1, ..., ξn — любые вещественные числа, то найдутся такие целые числа u1,…,un, что

│f(ξ1 – u1,…, ξn– un)│≤ k.

Подобные вопросы естественно возникают, например, в теории алгебраических чисел. И на этот раз имеется простая геометрическая интерпретация. Для наглядности положим n = 2. Пусть  — мно­жество таких точек (х1, х2) двумерной евклидовой плоскости, что

│f(x1, …, xn)│≤ k.

Пусть u1, u2 — любые целые числа; обозначим через (u1, u2) об­ласть, полученную из  параллельным переносом на вектор (u1, u2); иными словами, (u1, u2) есть множество таких точек х1, х2, что

│f(х1 – u1, х2– u2)│≤ k.

Неоднородная проблема состоит в выборе k таким образом, чтобы области (u1, u2) покрывали всю плоскость. Желательно выбрать k, а значит и , наименьшим из всех возможных (но так, чтобы свой­ство покрывать всю плоскость сохранилось). Здесь мы имеем про­тивоположность постановке однородной задачи, приведённой выше, где цель состояла в том, чтобы сделать области наибольшими, но все еще не пересекающимися одна с другой.


19



Содержание.

Введение. 2

Постановка задачи. 3

Основная задача геометрии чисел. 4

Теорема Минковского. 6

Доказательство теоремы Минковского. 7

Решётки. 10

Критические решётки. 13

8. «Неоднородная задача». 17

9. Список литературы. 18


2



Список литературы.

Касселс, Дж. В. С. Геометрия чисел – М., Мир, 1965г.

Минковский Г. Геометрия чисел – Лейпциг, 1911г. (переиздание 1996г.)

Марков А. А. О бинарных квадратичных формах положительного определителя – СПб., 1948г.

Чеботарёв М. Г. Заметки по алгебре и теории чисел – УЧ Зап. Каз. Унив-та, 1934г. (переиздание 1994г.)

Чеботарёв М. Г. Доказательство теоремы Минковского о неоднородных линейных формах – М., Мир, 1949г.

19



Министерство Образования Российской Федерации

ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Хабаровский Государственный Педагогический Университет
Кафедра математического анализа и информатики
Курсовая работа
“Геометрия чисел”

Выполнил: =PeppeR=


Научный руководитель: доцент кафедры мат. анализа и информатики

кандидат физ.-мат. наук


Хабаровск -
Информация о работе «Геометрия чисел»
Раздел: Математика
Количество знаков с пробелами: 19400
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
106586
1
13

... то поймем, как оно устроено, или, грубо говоря, каковы его основные «исходные компоненты». Тогда станет видно, как эти «компоненты» могут сочетаться в иных комбинациях, образуя иные типы пространств. 2.1 Основные понятия описания пространства-времени 2.1.1 Геометрические векторы и линейные операции над ними Для математического описания пространства удобно пользоваться векторами. Этот объект ...

Скачать
330445
3
30

... . Позитивизма. Для позитивистов верным и испытанным является только то, что получено с по­мощью количественных методов. Признают наукой лишь математику и естествознание, а обществознание от­носят к области мифологии. Неопозитивизм, Слабость педагогики нео­позитивисты усматривают в том, что в ней доминируют беспо­лезные идеи и абстракции, а не реальные факты. Яркий ...

Скачать
84631
3
48

... объём Vk шара радиуса r в k-пространстве при чётном и нечётном n соответственно равен  ,  (9. 12) Формула (9. 12) дает при k = 2, 3, 4, 5 соответственно  , , ,  (9. 13) Глава III. Применения многомерной геометрии § 10. О необходимости введения многомерного пространства (на примерах задач) В чём состоит польза многомерных пространств? Где они применяются? Зачем понадобилось ...

Скачать
89841
0
6

... информационной причинности взаимодействий (нейтрализация энтропии), связанной с процессами отражения степеней упорядоченности (возбуждений), обладание универсальной системой пространственно-временных отношений, выделяют “абсолютный квант” в феноменальное явление физической природы. Он может быть неожиданным материальным воплощением той начальной активной субстанции, которую объективный идеализм, ...

0 комментариев


Наверх