Минимизация ФАЛ

Совершенно нормальные формы хотя и дают однозначные представления функции, но являются очень громоздкими. Реализация СНФ программно или схемотехнически является избыточной, что ведет к увеличению программного кода, поэтому существуют методы упрощения логической записи – минимизации.

Определение: Преобразование логических функций с целью упрощения их аналитического представления называются минимизацией.

Существуют два направления минимизации:

1. Кратчайшая форма записи (цель – минимизировать ранг каждого терма). При этом получаются кратчайшие формы КДНФ, ККНФ, КПНФ.

2. Получение минимальной формы записи (цель – получение минимального числа символов для записи всей функции сразу).

При этом следует учесть, что ни один из способов минимизации не универсален!

Существуют различные методы минимизации:

1. Метод непосредственных преобразований логических функций. (1.1)

При применении данного метода:

а) Записываются ДСНФ логических функций

б) Форма преобразуется и упрощается с использованием аксиом алгебры логики. При этом, в частности, выявляются в исходном ДСНФ так называемые соседние min-термы, в которых есть по одной не совпадающей переменной.

По отношению к соседним min-термам применяется закон склейки, значит ранг min-терма понижается на единицу.

Определение: Min-термы, образованные при склеивании называются импликантами.

Полученные после склейки импликанты по возможности склеивают до тех пор, пока склеивание становится невозможным.

Определение: Несклеивающиеся импликанты называются прослойками.

Определение: Формула, состоящая из простых импликант – тупиковая.

Пример:

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Если в процессе склейки образуется форма R, содержащая члены вида  и то для нее справедливо выражение , что позволяет добавить к исходной форме R несколько членов вида пар  и и после этого продолжить минимизацию.

Пример:

Мы получили минимальную СНФ.

Метод неопределенных коэффициентов. (1.2)

Суть метода состоит в преобразовании ДСНФ в МДНФ.

На основании теоремы Жигалкина любую ФАЛ можно представить в виде (рассмотрим на примере трех переменных):

 

Алгоритм определения коэффициентов:

1. Исходное уравнение разбить на систему уравнений, равных числу строк в таблице истинности.

2. Напротив каждого выражения поставить соответствующее значение функции.

3. Выбрать строку, в которой значение функции и приравнять все  к нулю.

4. Просмотреть строки, где функция имеет единичное значение, и вычеркнуть все коэффициенты, встречающиеся в нулевых строках.

5. Проанализировать оставшиеся коэффициенты в единичных строках.

6. Используя правило, что дизъюнкция равна 1 если хотя бы один из , выбрать min-термы минимального ранга. Причем отдавать предпочтение коэффициентам, встречающимся в нескольких уравнениях одновременно.


Информация о работе «Минимизация функций алгебры логики»
Раздел: Математика
Количество знаков с пробелами: 21878
Количество таблиц: 27
Количество изображений: 4

Похожие работы

Скачать
29947
14
9

... 0 и 1: . 10. Законы Блейка-Порецкого: . 11. Связь импликации  с отрицанием – и дизъюнкцией : . 12. Связь эквивалентности ~ с дизъюнкцией , конъюнкцией  и отрицанием: ~ y =. Всякая функция алгебры логики может быть реализована некоторой формулой языка с символами ~, –. 1.2 Дизъюнктивные и конъюнктивные нормальные формы (ДНФ и КНФ) ДНФ и КНФ играют особую роль в алгебре ...

Скачать
9967
4
1

... схемами с односторонней проводимостью, имеющими конечное число входов и один выход. Простейшие электронные схемы, реализующие элементарные булевы функции (НЕ, И, ИЛИ, ИЛИ-НЕ, И-НЕ), называются логическими элементами (ЛЭ). Аналитическая форма представления булевых функций При решении конкретных технических задач булевы функции, отражающие логические связи, наиболее часто задаются в табличной ...

Скачать
61604
22
6

... ответ на этот вопрос положителен. Штрих Шеффера является отрицанием конъюнкции, стрелка Пирса – отрицание дизъюнкции, сумма Жегалкина – отрицание эквивалентности. М. Жегалкин (1869–1947) – российский математик и логик, один из основоположников современной математической логики. Чарльз Пирс (1839–1914) – американский логик, математик и естествоиспытатель. Основоположник семиотики, родоначальник ...

Скачать
52293
55
6

... , и, обратно, для любого автомата Мура существует эквивалентный ему автомат Мили. Таким образом, возможны взаимные трансформации автоматов.   Граф-дерево автомата Мили. 10 В ходе этапа построения кодопреобразователя осуществляется преобразование графа-дерево автомата Мура в граф-дерево автомата Мили. Для этого все конечные состояния автомата Мура заменяются нулевым состоянием. Граф-дерево ...

0 комментариев


Наверх