Министерство высшего образования Российской Федерации
Московский государственный строительный университет
РЕФЕРАТ
На тему:
“Однополостный гиперболоид”
Факультет: ПГС
Группа: №15
Студент: Муравицкий А.С.
Преподаватель: Ситникова Е.Г.
Москва
2003
Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени. К ним относится однополосный гиперболоид.
Однополосный гиперболоид.
Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
(1)
Из уравнения (1) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.
Уравнение (1) называется каноническим уравнением однополосного гиперболоида.
Если однополостный гиперболоид задан своим каноническим уравнением (1) то оси Ох, Оу и Oz называются его главными осями.
Установим вид поверхности (1). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения
и
из которых следует, что в сечениях получаются гиперболы.
Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями
или
из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и ,
достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.
Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.
Величины a, b, c называются полуосями однополосного гиперболоида.
Исследование поверхности методом параллельных сечений.
Суть метода заключается в выяснении формы линий пересечения поверхности с плоскостями, параллельными координатным плоскостям.
Рассмотрим линии пересечения с плоскостями, параллельными плоскости OXY. Все уравнения линий пересечений будут получаться из уравнения плоскости, в котором z будет заменена на некоторое число, равное расстоянию от пересекающей плоскости до плоскости OXY. Для более наглядного представления, я изобразил все полученные кривые в виде проекций на плоскость OXY. Изображения кривых представлены выше.
Величины a, b, c называются полуосями однополосного гиперболоида. Если a=b,то гиперболоид может быть получен вращением гиперболы с полуосями а и с вокруг мнимой оси 2с.
Одним из примеров такой поверхности является конструкция радиобашни построенной по принципу сетчатых конструкций на Шаболовке (г. Москва), Владимиром Григорьевичем Шуховым в 1919 - 1922 гг. В прошедшем году исполнилось 80 лет Шаболовской радиобашне — символу советского телевидения 40-60-х годов.
Список использованной литературы:
1.Шипачёв В.С.: «Высшая математика»
2.В.А. Ильин, Э.Г. Позняк: «Аналитическая геометрия»
3.И.Н.Бронштейн, К.А.Семендяев «Справочник по математике для инженеров и учащихся ВТУЗОВ»
Похожие работы
... вид a33 z2 + 2q´y = 0 (19) которое является уравнением параболического цилиндра с образующими, параллельными новой оси Ох. § 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям 1. Эллипсоид. Из уравнения (3) вытекает, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат—центром симметрии. Числа ...
Бреславец, В.Н. Гамаюнов). Объектом исследования в данной исследовательской работе являются фигуры вращения правильных многогранников. Предмет исследования – объем тел вращения. Работая над темой, мне удалось собрать удивительно интересный материал о правильных многогранниках. Оказалось, что даже тайна мироздания связана с этими пятью правильными многогранниками. В процессе исследования были ...
... поверхность второго порядка определяет следующее уравнение: 4x2 – y2 – z2 – 4xz =2? Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Билет № 26 121. Напишите условие параллельности прямых на плоскости, заданных уравнениями с угловыми ...
... закону. Эту линию называют образующей. Она может быть прямой, и тогда образованную ею поверхность относят к классу линейчатых. Если образующая - кривая линия, поверхность считают нелинейчатой. Линию, по которой перемещают образующую, называют направляющей. В качестве последней иногда используют след поверхности, т. е. линию ее пересечения с плоскостью проекций. Определителем поверхности называют ...
0 комментариев