5. Производная в приближенных вычислениях
5-1. Интерполяция
Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бóльшую точность.
Пусть Kn - система узловых точек a = x0 < x1 <…< xn = b. Функция Sk(x) называется сплайн-функцией Sk(x) степени k≥0 на Kn, если
а) Sk(x) є Ck-1([a, b])
б) Sk(x) - многочлен степени не большей k
Сплайн-функция Ŝk(x) є Sk(Kn) называется интерполирующей сплайн-функцией, если Ŝk(xj) = f(xj) для j = 0,1,…,n
В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию.
Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є [xj-1 ,xj]
Здесь s2j, cj1, cj0 неизвестны для j = 1, 2, …, n
Последние исключаются в силу требования s(xj) = yj:Дифференцируя эту функцию и учитывая, что s'(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений:
относительно n+1 неизвестных s20, s21,…, s2n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:
Нормальный случай(N):
Периодический случай(P) (т. е. f(x+(xn-x0))=f(x)):
Заданное сглаживание на границах:
Пример: сплайн-интерполяция функции f(x)=sin x, n=4.
Функция периодическая, поэтому используем случай P.
j | xj | yj | hj | yj-yj-1 |
0 | 0 | 0 | π/2 | 1 |
1 | π/2 | 1 | π/2 | -1 |
2 | π | 0 | π/2 | -1 |
3 | 3π/2 | -1 | π/2 | 1 |
4 | 2π | 0 |
Сплайн-функция получается такая:
5-2. Формула Тейлора
Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах
Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a0 + a1(x - a) + a2(x - a)2 + … + an(x - a)n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно:
Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида
называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.
С помощью ряда Маклорена можно получить простые разложения элементарных функций:
5-3. Приближенные вычисления
Часто бывает, что функцию f(x) и ее производную легко вычислить при x = a, а для значений x, близких к a, непосредственное вычисление функции затруднительно. Тогда пользуются приближенной формулой, полученной с помощью формулы Тейлора:
Пример: Извлечь квадратный корень из 3654
Решение: , x0=3654. Легко вычисляются значения f(x) и при x = 3600. Формула при a = 3600, b=54 дает:
С помощью этой формулы можно получить несколько удобных формул для приближенных вычислений:
Производная в школьном курсе алгебры
1. Структура учебников
Колмогоров:
§4. Производная
12. Приращение функции
13. Понятие о производной
14. Понятия о непрерывности и предельном переходе
15. Правила вычисления производных
16. Производная сложной функции
17. Производные тригонометрических функций
§5. Применение непрерывности и производной
18. Применения непрерывности
19. Касательная к графику функции
20. Приближенные вычисления
21. Приоизводная в физике и технике
§6. Применение производной к исследованию функций
22. Признак возрастания (убывания) функции
23. Критические точки функции, максимумы и минимумы
24. Примеры применения производной к исследованию функции
25. Наибольшее и наименьшее значения функции
Алимов:
Глава V. Производная и ее применение
§22. Производная
§23. Производная степенной функции
§24. Правила дифференцирования
§25. Производные некоторых элементарных функций
§26. Геометрический смысл производной
Глава VI. Применение производной к исследованию функций
§27. Возрастание и убывание функции
§28. Экстремумы функции
§29. Применение производной к построению графиков функции
§30. Наибольшее и наименьшее значения функции
Башмаков:
Глава II. Производная и ее применение
Вводная беседа
Механический смысл производной
Геометрический смысл производной
Определение производной
Предельные переходы
§1. Вычисление производной
Схема вычисления производной
Правила дифференцирования
Производная степени
Линейная замена аргумента
§2. Исследование функций с помощью производной
Связь свойств функции и ее производной
Особые точки
Решение задач
Построение графика функции
§3. Приложения производной
Скорость и ускорение
Скорость криволинейного движения
Дифференциал
Дифференциал в физике
Задачи на максимум и минимум
Приближенные формулы
... учащихся, школьную документацию, сделать выводы о степени усвоения данного понятия. Подвести итог об исследовании особенностей математического мышления и процесса формирования понятия комплексного числа. Описание методов. Диагностические: I этап. Беседа проводилась с учителем математики, которая в 10Є классе преподает алгебру и геометрию. Беседа состоялась по истечении некоторого времени с начала ...
... детальный разбор этого материала при активной работе учащихся. Тщательно рассматриваются все определения, прорешиваются примеры – идет усвоение нового материала. 2.2 Методика введения показательной функции Изучение темы «Показательная функция» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами: Обобщение понятия о степени; понятие о степени с иррациональным ...
... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
0 комментариев