2. Решение контрольного примера



где a=0 ; b= ; при n=5;


f(x) = sin(x);



i xi yi
1 0,131489 0,131118
2 0,490985 0,471494
3 0,785 0,706825
4 0,509015 0,487317
5 0,868511 0,763367

x1= /4+/4*t1=/4+/4(-0,832498)=0,131489


x2= /4+/4*t2=/4+/4(-0,374341)=0,490985


x3= /4+/4*t3=/4+/4*0=0,785


x4=1- x2=1-0,490985 = 0,509015


x5=1- x1=1-0,131489=0,868511

y1=sin(x1) = sin(0,131489)=0,131118

y2=sin(x2) = sin(0,490985)=0,471494


y3=sin(x3) = sin(0,785)=0,706825


y4=sin(x4) = sin(0,509015)=0,487317


y5=sin(x5) = sin(0,868511)=0,763367



I = /10(0,131118+0,471494+0,706825+0,487317+0,763367) =

=/10*2,560121=0,8038779.


3. Описание программы Integral. pas. Алгоритм.

Процедура VVOD - заполняет массив, содержащий в себе аргументы xi

Процедура FORM - используя массив, содержащий аргументы xi заполняет массив yi

Процедура CHEB - используя массивы xi и yi, высчитывает по квадратурной формуле Чебышева приближенное значение интеграла.

Процедура TABL - это подпрограмма, осуществляющая вывод таблицы узлов (аргумент - функция)


При запуске программы нужно ввести границы интегрирования.

После ввода границ интегрирования используется процедура VVOD, а затем высчитывается и выводиться на экран шаг табулирования функции h.

После этого используем процедуры FORM и CHEB .

Получив результат, выводим таблицу ( процедура TABL ) и интеграл.



4. Заключение и выводы.

Таким образом очевидно, что при вычислении определенных интегралов с помощью квадратурных формул, а в частности по формуле Чебышева не дает нам точного значения, а только приближенное.

Чтобы максимально приблизиться к достоверному значению интеграла нужно уметь правильно выбрать метод и формулу, по которой будет вестись расчет. Так же очень важно то, какой будет взят шаг интегрирования.

Хотя численные методы и не дают очень точного значения интеграла, но они очень важны, так как не всегда можно решить задачу интегрирования аналитическим способом.


5.Список литературы:

1. Ракитин Т.А., Первушин В.А. “Практическое руководство по численным методам с приложением программ на языке Basic“ 2. Крылов В.И. “Приближенные вычисления интегралов“ - М. : Физмат. 3. Демидович и Марон “Основы вычислительной математики“ 4. Копченова и Марон “Вычислительная математика в примерах и задачах”

5. Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.

6. Зуев Е.А. Язык программирования Turbo Pascal. М.1992 г.

7. Скляров В.А. Знакомьтесь: Паскаль. М. 1988 г.

6. Листинг программы.

Программа написана на языке Tubro Pascal 7.0 для MS-DOS. Ниже приведен ее листинг:

program integral;


uses crt;


const n=5;

k=-0.832498;

l=-0.374541;

z=0.0;


type aa=array[1..n] of real;


var x,y:aa;

a,b,h,ich:real;


{ заполнение х-сов в массив х[5] }


procedure vvod(var a,b:real;var c:aa);

var i:integer;

t:aa;

Begin

t[1]:=k;

t[2]:=l;

t[3]:=z;

t[4]:=l;

t[5]:=k;


for i:=1 to n-1 do

c[i]:=((b+a)/2+(b-a)/2*t[i]);

for i:=n-1 to n do

c[i]:=1 - c[n+1-i];

end;


{ заполнение y-ков в массиве у[5] }


procedure form(var x:aa; var y:aa);

var i:integer;

Begin

for i:=1 to n do

y[i]:=sin(x[i]); {функция}

end;


{ процедура для расчета интеграла по квадратурной

формуле Чебышева }


procedure cheb(var y:aa;var ich:real);

var i:integer;

Begin


ich:=0;

for i:=1 to n do

ich:=ich+y[i]*h;

end;


{ процедура вывода таблицы}


procedure tabl;

var i:integer;

Begin

writeln(' ___________________________________ ');

writeln('| i | t | x | y |');

writeln(' ___________________________________ ');

writeln('| 1 |',k:9:6,'|',x[1]:9:6,' |',y[1]:9:6,'|');

writeln('| 2 |',l:9:6,'|',x[2]:9:6,' |',y[2]:9:6,'|');

writeln('| 3 |',z:9:6,'|',x[3]:9:6,' |',y[3]:9:6,'|');

writeln('| 4 |',l:9:6,'|',x[4]:9:6,' |',y[4]:9:6,'|');


writeln('| 5 |',k:9:6,'|',x[5]:9:6,' |',y[5]:9:6,'|');

writeln(' ___________________________________ ');

end;


Begin


clrscr;

writeln(' П Р О Г Р А М М А Д Л Я В Ы Ч И С Л Е Н И Я');

writeln(' О П Р Е Д Е Л Е Н Н О Г О И Н Т Е Г Р А Л А ');

writeln;

writeln('Введите границы интегрирования a,b:');

readln(a,b);

vvod(a,b,x);

h:=(b-a)/n;

writeln('h=',h:9:6);

form(x,y);

cheb(y,ich);

tabl;

writeln('I=',ich:8:6);


end.


Вывод результата :


П Р О Г Р А М М А Д Л Я В Ы Ч И С Л Е Н И Я

О П Р Е Д Е Л Е Н Н О Г О И Н Т Е Г Р А Л А


Введите границы интегрирования a,b:

0 1.5708

h= 0.314160

____________________________

| i | t | x | y |

____________________________

| 1 |-0.832498| 0.131556 | 0.131177|

| 2 |-0.374541| 0.491235 | 0.471716|

| 3 | 0.000000| 0.785400 | 0.707108|

| 4 |-0.374541| 0.508765 | 0.487099|

| 5 |-0.832498| 0.868444 | 0.763325|

____________________________

I=0.8043


Информация о работе «Приближенное вычисление определенного интеграла при помощи квадратурной формулы Чебышева»
Раздел: Математика
Количество знаков с пробелами: 10801
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
8726
2
0

... for i: = n-1 to n do; c[i]: = 1 - c[n+1-i]; end; {заполнение y-ков в массиве у[5]} procedure form(var x:aa; var y:aa); var i:integer; Begin for i:=1 to n do y[i]:=sin(x[i]); {функция} end; {процедура для расчета интеграла по квадратурной формуле Чебышева} procedure cheb(var y:aa;var ich:real); var i:integer; Begin ich: = 0; for i: = 1 to n do ich: = ich+y[i]*h; end; {процедура вывода таблицы} ...

Скачать
33577
0
0

... с помощью рекурентных соотношений? 104) Приведите конечно-разностные выражения для первой производной. 105) Подынтегральная функция y = f(x) задана таблицейВзяв h = 0,3, вычислить интеграл  на отрезке [0,3; 0,9] методом Симпсона. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ЧИСЛЕННЫЕ МЕТОДЫ Билет № 22 106) Как ...

Скачать
17555
6
22

-6 S3 = 1.58075·10-5   Задача 2 Для функции g(x), заданной своими значениями в шести точках, составить таблицу всех повторных разностей. Преобразовать функцию g(x) с помощью линейного преобразования x = a + b * k в функцию G(k) с целочисленным аргументом k. В качестве проверки правильности заполнения таблицы вычислить аналитически конечную разность Δng(x) = ΔnG(k) для n = 5. ...

Скачать
57792
0
12

... 2.6 Приведение интеграла Стилтьеса к интегралу Римана Пусть функция  непрерывна в промежутке , а  монотонно возрастает в этом промежутке, и притом в строгом смысле. Тогда, как показал Лебег, интеграл Стилтьеса  с помощью подстановки  непосредственно приводится к интегралу Римана. На рисунке изображен график функции . Для тех значений , при которых функция  испытывает скачок (ибо мы вовсе ...

0 комментариев


Наверх