3. Сравним 1 —cosx с х при x→ 0.
|
т. е. 1—cos x при х → 0 есть бесконечно малая высшего порядка малости, чем х.
Дифференциал функции
1°. Определение. Дифференциалом (dy) функции y=f(x) называется произведение значения производной f '(х) на произвольное приращение ∆x аргумента х, т. е.
|
(I)
2°. Для получения значения дифференциала функции необходимо знать два числа: начальное значение аргумента, х, и его приращение, ∆x.
Пример. Вычислить дифференциал функции у = x2 при изменении значения аргумента х от 3 до 3,1.
Решение. dy=f '(х)* ∆х. Найдем dy сначала для произвольных значений х и ∆x.
f '(x) = (x2)' =2x.
Поэтому
dy=2x*∆x.
Начальное значение аргумента х=3, приращение его ∆x = 3,1 — 3 = 0,1. Подставляя эти значения в выражение dy находим:
dy =2*3*0,1=0,6.
Для данного значения независимого переменного х дифференциал функции f(x) есть линейная функция приращения независимого переменного ∆х.
3°. Рассмотрим геометрический смысл дифференциала функции. На черт. в точке х проведена касательная к графику функции y=f(x). Из ∆MPT следует, что
PT = MP*tgφ = ∆x*f '(x).
Но по определению f '(х) *∆x = dy, поэтому PT = dy.
Дифференциал функции f(x) при данном значении х геометрически выражается приращением ординаты касательной к графику функции y=f(x) в точке х.
4°. Дифференциал dy и приращение ∆у вообще не равны между собой. На черт. dy = PT менее ∆y=PQ.
Очевидно, dy может быть и более ∆y. Это будет, например, если поднимающаяся кривая MN будет вогнута вниз.
5°. Пример. Для функции у=x2 при изменении х от 3 до 3,1 приращение ∆y = 2x*∆x + + ∆x2 = 2*3*0,1 + 0, 12 = 0, 61 Дифференциал dy = 2х *∆x = 2*3 * 0, 1 = 0,6. Принимая dy за приближенное значение ∆у, имеем: абсолютная погрешность приближения равна разности ∆у—dy=0,01, а относительная погрешность приближения есть отношение:
(∆y—dy)/dy=00,1/0,60=1,7%
6°. Разность между приращением и дифференциалом функции, ∆у—dy, высшего порядка малости, чем приращение аргумента, ∆x.
Действительно, отношение ∆y/∆x отличается от своего предела f '(x) на бесконечно малую α, причем α → 0 при стремлении ∆x к нулю,
∆y/∆x — f '(x)= α.
Производя вычитание в левой части равенства, получаем:
(∆y-f '(x)*∆x)/∆x = α, или (∆у - dy) ∆x= α,
|
7°. Из сказанного следует: дифференциал функции есть приближенное значение ее приращения с относительной погрешностью, стремящейся к нулю вместе с приращением аргумента.
8°. Из изложенного следует, что дифференциал dy функции y=f(x) обладает двумя свойствами:
1) dy пропорционален ∆x (dy = k∆x, где k=y');
2) отношение (∆y—dy)/∆x стремится к нулю при стремлении ∆x к нулю.
Обратно. Если величина z обладает двумя свойствами:
1) z=k∆x и 2) то z есть дифференциал функции у.
Доказательство. Внося из (1) значение z во (2), имеем:
т. е. k = y',
а следовательно,
z = k∆x = y’∆x,
т. е. z есть дифференциал функции у.
Таким образом, эти два условия полностью определяют дифференциал.
Дифференциал аргумента. Производная как отношение дифференциалов
1°. Определение. Дифференциалом (dx) аргумента х называется, его приращение, ∆x:
dx = ∆х (II)
Может быть, некоторым основанием к этому служит то, что дифференциал функции у=х и приращение ее аргумента совпадают. Действительно,
dy = (x)' ∆x, или dy = ∆x.
Но так как
dy = dx, то dx = ∆x,
т.е. дифференциал функции у =х и приращение ее аргумента совпадают.
2°. Внеся в формулу (I) значение ∆x=dx, получаем:
|
(III)
т. е. дифференциал функции есть произведение ее производной на дифференциал аргумента.
3°. Формула (III) обладает замечательным свойством, именно: формула dy = f '(x)dx справедлива и в том случае, если x не является независимой переменной величиной, а является функцией другого аргумента, например и.
Действительно, если х есть функция от и, то f(x) есть сложная функция от u приращение dx обусловлено приращением ∆u, и dy надо вычислять по формуле;
dy = f 'u (x)* ∆u.
Но
f 'u (x)= f’x (x)* x’u
Значит,
dy = f’(x)—x'u * ∆u.
Но так как, по определению,
x'u ∆u = dx,
то, следовательно,
dy = f '(x)dx.
4°. Пример. Найти дифференциал функции:
_____________________
у = √ (e2x—1).
Решение. По формуле (III)
dy = у'*dx.
Находим у': ________ ________
y’ = e2x*2/( 2√ (e2x—1)) = e2x/ √ (e2x—1).
Значит _______
dy = e2x*dx/ √ (e2x—1)
5°. Из формулы (III) следует;
f’(x)=dy/dx,
т. е. производная функции равна отношению дифференциала функции к дифференциалу аргумента. Это иллюстрирует черт., где
dy/dx = PT/MP = tgφ=f '(x)
для произвольного значения dx = MP.
Приложения понятия дифференциала к приближенным вычислениям
1°. Разность ∆y—dy—бесконечно малая высшего порядка малости, чем ∆x, поэтому при достаточно малом ∆x
|
(IV)
Это означает, что при малых изменениях аргумента (от начального значения х) величину изменения функции y=f(x) можно приближенно считать пропорциональной величине изменения аргумента с коэффициентом пропорциональности, равным значению производной f '(x); кривую y=f (x) при этом можно приближенно заменить касательной к ней в точке х.
Так как ∆у = f(х + ∆x)—f (x), то, заменяя в формуле (IV) ∆у его выражением, имеем: f(x+∆x) - f(x) ≈ f '(x)* ∆x
|
(V)
В математике производную применяют для:
1. Исследования функции на монотонность, экстремумы.
2. Нахождения касательной к графику.
3. Нахождения наибольших, наименьших значений функций.
4. Нахождения дифференциала для приближенных вычислений.
5. Для доказательства неравенств.
Рассмотрю некоторые примеры применения производной в алгебре, геометрии и физике.Задача 1. Найти сумму 1+2*1/3+3(1/3)2+…+100(1/3)99;
Решение.
Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.
Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.
Ясно, что f ’(x)=g(x).
f(x) — сумма геометрической прогрессии.
Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,
g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.
Подставлю x = 1/3.
Ответ: 0,25(9—205*3-99)
Задача 2. Найти сумму 1+2*3+3*32+…+100*399;
Решение.
Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.
Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.
Ясно, что f ’(x)=g(x).
f(x) — сумма геометрической прогрессии.
Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,
g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.
Подставлю x = 3.
Ответ: ≈ 2,078176333426855507665737416578*1050.
Задача 3. Найдите площадь треугольника AMB, если A и B — точки пересечения с осью OX касательных, проведенных к графику y = (9—x2)/6 из точки M(4;3).
Решение.
т. A = укас1∩OX Решение:
т. B = укас2∩OX укас =y(x0)+у’(x0)(x—x0);
y = (9—x2)/6 y’(x0) = -2x*1/6 = -x/3;
M(4;3)________ т.к. укас проходит через M(4;3), то
SAMB —? 3 = (9—x02) — (4—x0)* x0/3 | *3
18 = 9—x02—2x0(4—x0);
x02—8 x0—9 = 0;
Д/4 = 16 + 9;
x0 = 4+5 = 9;
x0 = 4—5 = -1
укас1 = -12 — (x—9)*9/3 = -3x+15;
укас1 = 4/3 + (x+1)*1/3 = x/3+5/3;
A(5;0); B(-5;0);
AM = √10 (ед.);
AB = 10 (ед.);
BM = 3√10 (ед.);
p — полупериметр; __
p = (4√10 + 10)/2 = 2√10 + 5;
__ __ __ __ __ __
S = √(2√10 + 5) (2√10 + 5—√10) (2√10 + 5—3√10) (2√10 + 5—10) =
= √(2√10 + 5)(√10 + 5)(5—3√10)(2√10—5) =
= √(40—25)(25—10) = 15 (ед2);
Ответ: 15 (ед2).
Задача 4. Какая наименьшая плоскость может быть у треугольника OAB, если его стороны OA и OB лежат на графике функции y = (|x|—x)/2, а прямая AB проходит через точку M(0;1).
Решение:
-x, x<0
y =
0, x>0
A(a;-a); B(b;0);_
AO = |a|√2 = -a√2 (т.к. a<0);
BO = b;
Для т. B:
у1 = kx +z;
т.к. у1—график линейной пропорциональности, проходящий через т M(0;1), то z = 1.
0=kx+1;
k=-1/b;
Для т. A:
у1=kx+1;
-a=kx+1;
k=(-1-1a)/a;
у1A= у1B
(-a—a)/a = -1/b;
b+ab=a;
a(1—b)=b;
a = b/(1-b);
S∆AOB=0,5*AO*OB*sin/_AOB
ÐAOB =180o—45o = 135o
S∆AOB=0,5*(√2/2)* (-a)b√2 = -ab/2;
S∆AOB = -b2/(2(1—b)) = b2/(2(1—b)); D(y): b>1(т.к. при b<1 не образует ∆AOB.);
т.к. функция непрерывна и дифференцируема на b>1, то найду ее производную:
S’ = (4b(b—1)—b2)/(4(b—1)2) = (4b2—4b—2b2)/(4(b—1)2) = 2b(b—2)/(4(b—1)2) =
= b(b—2)/(2(b—1)2);
S’ = 0;
точки экстремума:
b=0;
b=1;
b=2;
но b>1, значит
Sнаим =S(2) = 4/(2(2—1))=2(ед2);
Ответ: 2 ед2.
Задача 5. В прямоугольном параллелепипеде ABCDA1B1C1D1 с ребрами CD = 24, AD= 6 и DD1 =4 проведена плоскость через центр симметрии грани A1B1C1D1 , вершину А и точку Р, лежащую на ребре DC. Какую наименьшую площадь может иметь сечение параллелепипеда этой плоскостью? На какие части делит точка P ребро DC в этом случае?
Решение. Проведем плоскость и построим сечение (рис.). АО Î АA1C1С - линия, принадлежащая данной плоскости. Продолжим АО до пересечения с CC1 в точке S. Тогда SP - линия пересечения грани DD1C1C и данной плоскости, а сечение ANMP - параллелограмм. Sсеч = SAMNP = SK*AP/2 , потому что SK/2— высота параллелограмма ANMP. Это видно из следующего рассуждения.
В ΔASC ОC1 - средняя линия (значит SC1 = 4), в ΔPSC также средняя линия МC1, а плоскость A1B1C1D1 делит пополам любую линию между S и плоскостью ABCD, а значит и SK.
Пусть PC = x; ΔCLP подобен ΔDAP,
LC/AD = x/(24—x), LC = 6x/(24—x);_____________ ____________
Из ΔCLP: KC = (6x*x/(24—x))/(√(36x2/(24—x)2)+x2) = 6x/(√(36+ (24—x)2);
________ ___________________ __________________
Из ΔSCK: SK = √SC2+ KC2 = √64+36x2/(36+(24—x)2) = 2√16+9x2/(36+(24—x)2) ;
Из ΔADP: AP = √36+(24—x)2;_____ _________________ __________________
Sсеч = AP*SK/2 = 0,5*(√36+(24—x)2) 2√16+9x2/(36+(24—x)2) = √16(36+(24—x)2)+9x2;
Если S’(x) = 0, то 18x+16*2(24—x)(-1) = 0;
50x—32*24 = 0, x = 32*24/50 = 32*12/25 = 384/25 (это точка min);
Sсеч = 312;
DP = 24—16*24/25 = 216/25;
Ответ: 312 кв. ед.; DC: 384/25; 216/25.
Задача 6. Высота пирамиды TABC с основанием ABC проходит через середину ребра AC. Выберите на AC точку М так, чтобы площадь сечения пирамиды плоскостью, проходящей через точку M, середину ребра TC и вершину B, была наименьшей, если AB=BC=AC=TC=2.
Решение. HF=FC=1/2;
S∆BME = BM*EK*1/2;___ _
Из ∆TCH => TH = √4—1=√3;
EF = TH/2=√3/2;
Пусть MC = x.
Из ∆BMC по теореме косинусов MB2= x2+4—2*2*x*1/2;
MB = √x2—2x+4; _ _
S∆BMC = 0,5*MC*BC*sinC=(x/2)*2√3 /2 = x√3/2;
S∆BMC = 0,5*BM*PC, _ ________
PC = (2S∆BMC)/BM, PC = x√3/√x2—2x+4 ;
∆KMF подобен ∆PMC(по двум углам):
KF/PC = MF/MC(рис 2),_____ _ _________
KF = x√3(x—1/2)/(x√x2—2x+4) = √3(x—1/2)/(√x2—2x+4);
________ ______________________
Из ∆KEF => KE = √ KF2+EF2 = √3(x—1/2)2/(x2—2x+4)+3/4; _
S∆BME = 0,5√x2—2x+4 *√3(x—1/2)2/(x2—2x+4)+3/4 = 0,5√3(x—1/2)2+(x2—2x+4)*3/4;
Если S’(x) = 0, то
6(x—1/2)+(2x—2)*3/4 = 0;
15x—9 = 0;
x = 3/5; __
S(3/5) = √15/5 кв.ед.
Ответ: √15/5 кв.ед.
Задача 7. В сферу радиусом R вписана правильная треугольная пирамида, у которой боковое ребро образует с высотой пирамиды угол 60o. Какую наименьшую площадь может иметь треугольник MBK, если точка M лежит на апофеме пирамиды, а BK — высота основания пирамиды, не пересекающая апофему?
Решение. TP = 2R, ÐATO = 60o.
Пусть AB = BC = CA = a(рис.)
Тогда AO = a√3/3,
AD = BK = a√3/2, _ _
TO = AO*ctg60o= a√3/3*1/√3 = a/3,
OD = a√3 /6,
AO2 = TO*OP = TO(2R - TO),
a2/3 = a(2R – a/3)/3, a = 3R/2.
S∆MBK = BK*LM*1/2, BK = const,
S∆MBK = f(LM),__
LM = √MN2+NL2
Пусть MD = x, тогда MN = x cos / NMD; _
cos Ð NMD = TO/TD = a/(3√a2/9+a2/12 = 2/√7, MN = 2x/√7 .
Из ∆ONL: LN = ON cos30o (ÐONL = 30o);
ON = OD – ND, _ _ _ _ _
ND = x sin ÐNMD = x √3/√7, ON = a√3/6 - x√3/√7,
LN = (a√3/6 - x√3/7)√3/2 = (a/4 – 3x/(2√7)),
LM = √4x2/7+(a/4 – 3x/(2√7))2. _ _
Если LM’(x) = 0, то 8x/7+2(a/4 – 3x/(2√7))(-3/2√7) = 0,
8x/7 – 3a/4√7 + 9x/14 = 0,
25x/14 = 3a/4√7,
x = 21a/50√7. __ __
MN = (21a/50√7)*(2/√7) = 3a/25,
LN = a/4 – (3/2√7)*(21a/50√7) = 4a/25,
LM = √a2/625 + 9a2/625 = a√10/25. _
S∆MBK = a√3/2*a/5*1/2 = a√3/20 = 9√3 R2/80.
Ответ: 9√3 R2/80.
Задача 8. В сферу радиусом R вписана правильная треугольная пирамида, высота которой в 1,5 раза меньше высоты основания. Между боковой гранью пирамиды и сферой расположена правильная четырехугольная призма, одно из оснований которой (ближнее к центру сферы) лежит в плоскости боковой грани пирамиды, а вершины другого основания принадлежат сфере. Какой должна быть высота призмы, чтобы ее объем был наибольшим? Найти этот объем.
Решение. SABC – правильная треугольная пирамида (рис), вписанная в сферу радиусом R,
SO*1,5 = AD,
LMN – правильная четырехугольная призма.
Найти. Vпр = f(LM).
Пусть SO = H, тогда AD = 1,5H;
SO1 = R – радиус сферы; LM = x –высота призмы.
∆SKO1 подобен ∆SOD => O1K/OD = SO1/SD => OK1 = OD*SO1/SD.
Из ∆AO1O: R2 = AO2 + O1O2 = (2AD/3)2 + (AD*2/3 - R)2,
R2 = 4AD2/9 + 4AD2/9 –AD*R*4/3,
8AD2/9 = AD*R*4/3 => AD = 3R/2.
Отсюда OD = R/2;
AO1= R и SO1 = R; _
SD = √R2 + R2/4 = R√5/2, _
OK1 = 2*R*R/(2R√5) = R√5/5;
O1K = R√5/5.
Из ∆O1FN => R2 = (O1K + x)2 + NF2,
Sосн = 2NF2. _
Vпр = Sосн*x = 2(R2 – R2/5 – 2x√5 R/5 - x2)*x;
Vпр = 2(4R2x/5 – 2x2√5 R/5 - x3);
V’пр(x) = 2(4R2/5 – 2x√5 R/5 - 3x2) = 0; _
x 1,2 = (2R√5/5 + √4R2/5 + 12R2/5)/(-3) = (2R√5/5 + 4R/√5)/(-3);
x = 2√5 R/15 _ _
Vпр.max = 2(4R2*2√5R/(5*15) – 2√5R*4R2/(45*5) - _ 40√5R3/(225*15)) = 16R3√5(1 – 1/3 – 5/45)/75 = 16√5R3/135.
Ответ: 16√5R3/135 м3 при H = 2√5R/15.
Дано. ASO – конус;
SO = H;
AO = R;
CL/CM = BK/BN;
Найти. BN, чтобы Vпр = max
Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.
∆CSD подобен ∆ASO: CD/AO = SD/SO;
CD/R = (H – x - h)/H;
CD = R(H – x -h)/H.
∆BSE подобен ∆ASO: BE/AO = SE/SO;
BE/R = (H - h)/H;
BE = R(H - h)/H.
Находим отношение CD/BE = (H – x - h)/(H - x).
Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,
что CD/BE = h/x, т. е. (H – x - h)/(H - x) = h/x => h = (Hx – x2)/H
Тогда CD = R(H – x – (Hx – x2)/H)/H = R(H2 – Hx – Hx +x2)/H2 = R(H - x)2/H2,
CL = 2CD = 2R(H - x)2/H2.
V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;
V’(x) = 2R2((H - x)5 – 5(H - x)4 x)/H5 = 0,
(H – x) – 5x = 0, x = H/6.
V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.
Ответ: при H/6, Vmax = 2R2H*55/66.
В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин.
Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 – b/r, где a и b — положительные постоянные, r — расстояние между частицами.
Найти:
а) значение r0 соответствующее равновесному положению частицы;
б) выяснить устойчиво ли это положение;
в) Fmax значение силы притяжения;
г) изобразить примерные графики зависимости U(r) и F(r).
U = a/r2 – b/r; Решение:
a и b — counts; Для определения r0соответствующего равновесному
r0 — ? положению частицы исследуем f = U(r) на экстремум.
Fmax — ? Используя связь между потенциальной энергией поля
U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;
при этом r = r0; 2a/r3 = b/r2 => r0 = 2a/b;
Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02= dF/dr0=-6a/r04 + 2b/r03 = -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a3)<0;
равновесие устойчивое.
Для определения Fmax притяжения исследую на экстремумы функцию:
F = 2a/r3— b/r2;
dF/dr = -6a/r4 + 2b/ r3 = 0;
при r = r1 = 3a/b;
подставляя, получу Fmax = 2a/r31 — b/r31 = - b3/27a2;
U(r) = 0; при r = a/b; U(r)min при r = 2, a/b = r0;
F = 0; F(r)max при r = r1 = 3a/b;
Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.
Определить сопротивления резисторов при которых сопротивление исходной цепи будет наибольшим.
R1 = 9 R2 Решение:
При параллельном соединении резисторов эквивалентное
R1, R2, R3 сопротивление по формуле:
1/Rэкв = 1/R1+1/R2+1/R3;
Rэкв max— ? выражу R3через R2:
R3 = R— R1—R2=R—10R2;
тогда 1/Rэкв = (10R—91R2)/(9R2(R—10R2));
Задача сведена к определению наименьшего значения функции в интервале [0;R/10].
Возьмем производную от f(1/Rэкв) по R2и преобразуем ее:
(1/Rэкв)’ = -910(R2—R/7)(R2—R/13)/(9R22 (R-10R2)2);
В интересующем нас интервале только одна точка R2 = R/13 в которой эта производная меняет знак с “—” слева на ”+”справа. Поэтому в точке R2 = R/13 достигается минимум функции 1/Rэкв и максимум функции Rэкв, при этом
R1 = 9R/13; R2 = 1R/13; R3 = 3R/13;
Rэкв max = 9R/169;
Задача 4. В магнитном поле с большой высоты падает кольцо, имеющее диаметр d и сопротивление R. Плоскость кольца все время горизонтальна. Найти установившуюся скорость падения кольца, если вертикальная составляющая индукции магнитного поля изменяется с высотой H по закону B = B0(1 + αH), где α = const (черт.).
Решение. Пусть n – нормаль к плоскости кольца, тогда магнитный поток, созданный вертикальной составляющей магнитного поля.,
Ф = BS = B0(1 + αH)S, где S = πd2/4 – площадь контура.
ЭДС индукции, возникающая в кольце,
E = - Ф’(t) = - (B0(1 + αH)S)’ = - B0SαH’(t).
Производная H’(t) = νн – это проекция скорости кольца на ось H. Таким образом,
Ei = - B0Sα( - νн).
Так как скорость кольца направлена против оси H, то νн = - ν, где ν – модуль скорости кольца и Ei = B0Sαν.
По кольцу протекает индукционный ток
J = Ei /R = B0Sαν/R.
В результате в кольце за промежуток времени Δt выделяется количество теплоты
Q = J2RΔt.
На высоте H1 кольцо обладает механической энергией
W1 = mgH1 + mν2/2,
на высоте H2
W2 = mgH2 = mgH2 + mν2/2
(ν = const, т. е. скорость кольца не меняется). По закону сохранения энергии
W1 = W2 + Q => mgH1 = mgH2 + J2RΔt => mg(H1 - H2) = (B0Sαν/R)2RΔt =>
mg(H1 - H2) = (B0Sαν)2Δt/R (*)
Разность (H1 - H2) есть расстояние, пройденное кольцом при равномерном движении, поэтому H1 - H2 = νΔt, и уравнение (*) примет вид:
mgνΔt = (B0Sαν)2Δt/R => mg = (B0Sα)2ν/R =>
ν = mgR/(B0Sα)2 = 16mgR/(B0πd2α)2.
Ответ: ν = mgR/(B0Sα)2 = 16mgR/(B0πd2α)2.
Задача 6. Цепь с внешним сопротивлением R = 0,9 Ом питается от батареи из k=36 одинаковых источников, каждый из которых имеет ЭДС E=2 В и внутреннее сопротивление r0 = 0,4 Ом. Батарея включает n групп, соединенных параллельно, а в каждой из них содержится m последовательно соединенных аккумуляторов. При каких значениях m, n будет получена максимальная J во внешнем R(см. рис.).
Решение:
При последовательном соединении аккумуляторов Eгр = m*E; rгр = r0*m;
а при параллельном соединении одинаковых rбат = r0m/n; Eбат = m*E,
По закону Ома J = mE/(R+ r0m/n) = mEn/(nR + r0m)
Т.к. k – общее число аккумуляторов, то k = mn;
J = kE/(nR + r0m) = kE/(nR + kr0/n);
Для нахождения условия при котором J тока в цепи максимальная исследую функцию J = J(n) на экстремум взяв производную по n и приравняв ее к нулю.
J’n-(kE(R—kr0/n2))/ (nR + kr0/n)2 = 0;
n2 = kr/R; .
n = √kr/R = √3,6*0,4/0,9 = 4;
m = k/n = 36/4 = 9;
при этом Jmax = kE/(nR + mr0) = 36*2/(4*0,9 + 9*0,4) = 10 А;
Ответ: n = 4, m = 9.
Задача 7. Платформа массой М начинает двигаться вправо под действием постоянной силы F. Из неподвижного бункера на нее высыпается песок. Скорость погрузки постоянна и равна m кг/с. Пренебрегая трением, найти зависимость от времени ускорения а платформы в процессе погрузки. Определить ускорение а1 платформы в случае, если песок не насыпается на платформу, а из наполненной высыпается через отверстие в ее дне с постоянной скоростью m кг/с.
Решение.
Рассмотрим сначала случай, когда песок насыпается на платформу
Движение системы платформа-песок можно описать с помощью второго закона Ньютона:
dP/dt = FS
P – импульс системы платформа-песок, FS – сила, действующая на систему платформа-песок.
Если через p обозначить импульс платформы, то можно написать:
dp/dt = F
Найдем изменение импульса платформы за бесконечно малый промежуток времени Dt:
Dp = (M+m(t+Dt))(u+Du) – (M+mt)u =FDt
где u – скорость платформы
Раскрыв скобки и, проведя сокращения получаем:
Dp = muDt + MDu+mDut+ mDuDt =FDt
Разделим на Dt и перейдем к пределу Dt ®0
Mdu/dt+mtdu/dt+mu=F
или
d[(M+mt)u]/dt = F
Это уравнение можно проинтегрировать, считая начальную скорость платформы равной нулю:
(M+mt)u = Ft
Следовательно:
u = Ft/(M+mt)
Тогда, ускорение платформы:
a = du/dt = (F(M+mt)-Ftm)/(M+mt)2 = FM / (M+mt)2
Рассмотрим случай, когда песок высыпается из наполненной платформы.
Изменение импульса за малый промежуток времени:
Dp = (M-m(t+Dt))(u+Du) +mDtu – (M-mt)u = FDt
Слагаемое mDtu есть импульс количества песка, которое высыпалось из платформы за время Dt
Тогда:
Dp = MDu - mtDu - mDtDu = FDt
Разделим на Dt и перейдем к пределу Dt ®0
(M-mt)du/dt = F
или
a1=du/dt= F/(M-mt)
Ответ: a = FM / (M+mt)2 , a1= F/(M-mt)
СПИСОК ЛИТЕРАТУРЫ
1. М64 И. Ф. Суворов “Курс высшей математики для техникумов”. М.: Просвещение, 1964.
2. М 71 В. В. Ткачук “Математика—абитуриенту”. М.: Просвещение, 1980.
3. P60 Д. Е. Родионов, Е. М. Родионов “Стереометрия в задачах”. М.: Учебный центр “Ориентир” – “Светоч”, 1998.
4. P60 В. А. Колесников. “Физика. Теория и методы решения конкурсных задач. Часть II”. М.: Учебный центр “Ориентир” – “Светоч”, 2000.
5. Л77 Л. М. Лоповок “1000 проблемных задач по математике”. М.: Просвещение, 1995.
6. М89 Д. Т. Письменный “Математика для старшеклассников. Теория\задачи”. М.: “Айрис”, “Рольф”, 1996.
7. С 82 М. Я. Выгодский “Справочник по элементарной математике”. Спб.: Союз, 1997.
8. В20 В. И. Васюков, И. С. Григорьян, А. Б. Зимин, В. П. Карасева “Три подсказки – и любая задача решена! Часть III”. М.: Учебный центр “Ориентир” при МГТУ им. Н. Э. Баумана, 2000.
9. Э 61 В. А. Чуянов “Энциклопедический словарь юного физика”. М.: Педагогическа-Пресс, 1999.
10. Б 27 А. Б. Басков, О. Б. Баскова, Н. В. Мирошин “Математика. Часть 2. Алгебра и начала анализа”. М.: МИФИ, 1997.
РЕЦЕНЗИЯ НА РАБОТУ
... формулы Ньютона — Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано. Символ ∫ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово ...
... математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1. Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2. Проведение разработанного факультативного курса. 3. Проведение диагностирующей контрольной ...
... их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными. В своей же работе я хочу подробнее остановится на приложениях производной. 1. Понятие производной При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из ...
... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...
0 комментариев